首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
不同有效碱含量下纳米氧化铝对水泥石固、液相组成的影响
作者:周学进 郑克仁   
单位:中南大学土木工程学院 长沙 410075 
关键词:纳米氧化铝 孔溶液 水泥石 水化硅酸钙 
分类号:TQ172
出版年,卷(期):页码:2018,46(2):193-205
DOI:
摘要:

研究了水泥中有效碱含量为0.58%、1.25%条件下纳米氧化铝(取代3%的水泥)对水泥石固相、液相组成的影响。有效碱含量为0.58%条件下,纳米氧化铝溶解所释放的Al进入孔溶液,参与形成单硫型水化硫铝酸钙,同时降低孔溶液中S(硫)元素浓度。形成的单硫型水化硫铝酸钙可以向水化碳铝酸钙和半碳型水化碳铝酸钙等更加稳定的AFm相转化。AFm相溶解度是孔溶液Al浓度的控制因素,3%的纳米氧化铝并不能提高Al浓度。部分溶解的Al进入C-S-H中,也限制了孔溶液Al浓度的提高和AFm相数量的增加。有效碱含量为1.25%时,液相碱度的提高导致AFm相溶解度增大,使水化后期孔溶液中Al、S浓度同时提高,但Al浓度不超过0.3 mmol/L,AFm相仍然是孔溶液Al浓度的控制因素。

This paper reports the influence of alumina nano-particles on the compositions of pore solution and solid phases of cement paste at different alkali contents (Na2Oeq: 0.58% and Na2Oeq: 1.25% by mass of cement). At a low alkali content (i.e., Na2Oeq: 0.58%), alumina nano-particles dissolve and release Al species into the pore solution due to the formation of the more monosulfate, leading to a decreased S concentration in the pore solution. The formed monosulfate can transform into more stable AFm (calcium silicate hydrate) phases, such as monocarbonate and hemicarbonate. The concentration of Al in pore solution is controlled by the solubility of AFm phases, and the presence of 3% alumina nano-particles (by mass of cement) only causes a slightly increase in Al concentration in pore solution. At a high alkali content in cement (i.e., Na2Oeq: 1.25%), the increase of alkalinity increases the solubility of ettringite and AFm phases, and reduces the saturation degree of these phases. The increased solubility of ettringite and AFm phases leads to increases in Al and S concentrations simultaneously in pore solution, especially at latter ages. In this case, the solubility of AFm phases is still a factor controlling Al species concentration in pore solution.

基金项目:
自然科学基金项目(51578551;U1534207)。
作者简介:
周学进(1992—),男,硕士研究生。
参考文献:
[1] QIU Xueqing, PENG Xiongyi, YI Conghua, et al. Effect of Side Chains and Sulfonic Groups on the Performance of Polycarboxylate-Type Super plasticizers in Concentrated Cement Suspensions[J]. J Dispersion Sci Technol, 2010, 32(2): 203–212.
[2] LIU J, RAN Q, MIAO C, et al. Effects of Grafting Densities of Comb-Like Copolymer on the Dispersion Properties of Concentrated Cement Suspensions[J]. Mater Transact, 2012, 53(3): 553–558.
[3] LI Y, YANG C, ZHANG Y, et al. Study on dispersion, adsorption and flow retaining behaviors of cement mortars with TPEG-type polyether kind polycarboxy late super plasticizers[J]. Construc Build Mater, 2014, 64(22):324-332. 
[4] 马保国, 杨虎, 谭洪波, 等. 水泥和黏土矿物对不同减水剂的吸附特性[J]. 硅酸盐学报, 2013, 41(3): 328–333.
MA Baoguo, YANG Hu, TAN Hongbo, et al. J Chin Ceram Soc, 2013, 41(3): 328–333.
[5] LEI L, PLANK J. A concept for a polycarboxy late super plasticizer possessing enhanced clay tolerance[J]. Cem Concr Res, 2012, 42(10): 1299–1306.
[6] LEI L, PLANK J. A study on the impact of different clay minerals on the dispersing force of conventional and modified vinyl ether based polycarboxy late super plasticizers[J]. Cem Concr Res, 2014, 60(6): 1–10.
[7] NG S, PLANK J. Interaction mechanisms between Na montmorilloniteclay and MPEG-based polycarboxy late super plasticizers[J]. Cem Concr Res, 2012, 42(6): 847–854.
[8] XU H, SUN S, WEI J, et al. β-cyclodextrin as pendant groups of a polycarboxy late super plasticizer for enhancing clay tolerance[J]. Ind Eng Chem Res, 2015, 54(37): 150901161553000.
[9] 刘立新, 何春霄, 于庆龙, 等. 小阳离子聚合物-聚乙二醇协同防膨作用研究[J]. 化工科技, 2014, 22(3): .
LIU Lixin, HE Chunxia, YU Qinglong, et al. Chem Technol (in Chinese), 2014, 22(3): 
[10] 何廷树, 李扬, 徐一伦, 等. 基于聚羧酸高效减水剂的抗泥泵送剂的研究[J]. 硅酸盐通报, 2016, 35(1): 101–105.
HE Tingshu, LI Yang, XU Yilun, et al. Bull Chin Ceram Soc (in Chinese), 2016, 35(1): 101–105.
[11] XU D, ZHOU X, WANG X. Adsorption and desorption of Ni2+, on Na-montmorillonite: Effect of pH, ionic strength, fulvic acid, humic acid and addition sequences[J]. Appl Clay Sci, 2008, 39(3/4): 133–141.
[12] JR M A, SMITH N R. Ferrochrome lignosulfonates: I. X-Ray absorption edge fine structure spectroscopy II. Interaction with ion exchange resin and clays[J]. J Colloid Interface Sci, 1969, 29(3): 389–398.
[13] LI R, YANG D, GUO W, et al. The adsorption and dispersing mechanisms of sodium lignosulfonate on Al2O3 particles in aqueous solution[J]. Holzforschung, 2013, 67(4): 387–394.
[14] OUYANG X, DENG Y, QIAN Y, et al. Adsorption Characteristics of Lignosulfonates in Salt-Free and Salt-Added Aqueous Solutions[J]. Biomacromolecules, 2011, 12(9): 3313.
[15] PENG J, QU J, ZHANG J, et al. Adsorption characteristics of water-reducing agents on gypsum surface and its effect on the rheology of gypsum plaster[J]. Cem Concr Res, 2005, 35(3): 527–531.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com