首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
水热合成-低温煅烧硫铝酸钙水泥熟料矿物的形成过程
作者: 伟1  春1 俞平胜1 蒋金海1 文寨军2 
单位:1. 盐城工学院材料科学与工程学院 江苏 盐城 224051 2. 中国建筑材料科学研究总院 北京 100024 
关键词:硫铝酸钙水泥熟料 水热合成 低温煅烧 
分类号:TQ172
出版年,卷(期):页码:2018,46(2):206-211
DOI:
摘要:

以水热合成-低温煅烧法制备低温型硫铝酸钙(C4A3$)-贝利特水泥熟料,用X射线衍射、热重-差热分析、扫描电镜等分析了水热合成产物种类、煅烧过程中矿物相衍变,进而分析C4A3$的低温形成机制。结果表明:90 ℃水热合成物的比表面积高达76 800 m2/kg,煅烧时水化硫铝酸钙AFm和AFt在650 ℃生成C12A7,750 ℃开始形成C4A3$ ,于1 100 ℃形成完全,其形貌为五角十二面型聚体。煅烧过程中无明显SO3质量变化,且烧成温度比一步法低200~250 ℃。水热合成物及其高比表面积是C4A3$ 低温形成的主要原因,而低温烧成是低硫排放的主要因素。

The low-temperature type calcium sulphoaluminate (C4A3$) - belite cement clinker was prepared via hydrothermal synthesis-low-temperature calcination. The hydrothermal synthesis products and minerals during the calcination of clinker were analyzed by X-ray diffraction, thermogravimetric analysis/differential scanning calorimetry, and scanning electron microscopy, respectively, and the formation mechanism of C4A3$ with low-temperature characterizations was discussed. The results show that the specific surface area of hydrothermal product in hydrothermal reaction at 90 ℃ is 76 800 m2/kg, C12A7 appears at 650 ℃ due to AFm and AFt (i.e., hydrated calcium sulphoaluminate), C4A3$ begins to form at 750 ℃, and C4A3$ completely forms at 1 100 ℃. The morphology of C4A3$ is pyritohedron, and the mass fraction of SO3 has little change in the calcination process. The clinker sintering temperature is 200~250 ℃,which is lower than that of the conventional direct calcination. C4A3$ formed at a low temperature is due to the presence of hydrothermal synthesis product with the great specific surface area, and the formation of C4A3$ at a low temperature is a main reason for the calcination process without sulfur emissions.

基金项目:
国家重点研发计划项目(2016YFB0303600);江苏省生态建材与环保装备协同创新中心项目(GX2015304);江苏省经贸委项目(20169343)。
作者简介:
郭 伟(1970—),女,博士,教授。
参考文献:
[1] COSTA E B, RODRIGUEZ E D, BERNAL S A, et al. Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge[J]. Construct Build Mater, 2016, 122: 373–383.
[2] SHEN Y, QIAN J S, CHAI J Q, et a1. Calcium sulphoaluminate cements made with phosphogypsum: Production issues and material properties[J]. Cem Concr Compos, 2014, 48: 67–74.
[3] LIU X W, YUAN Z W, XU Y, et al. Greening cement in China: A cost-effective roadmap[J]. Appl Energy, 2017, 189: 233–244.
[4] 沈晓冬, 姚燕. 水泥材料研究进展[M]. 北京: 高等教育出版社, 2012.
[5] PUERTAS F, VARELA M T B, MOLINA S G. Kinetics of the thermal decomposition of C2.75B1.25A3$ in air[J]. Cem Concr Res, 1995, 25: 572–580.
[6] GUO H, XIE J. Thermodynamics and Kinetics of Calcium Sulphoaluminate[J]. J Wuhan Univ Technol: Mater Sci Ed, 2011, 26(4): 719–22.
[7] 马素花, 沈晓冬, 黄叶平, 等. 无水硫铝酸钙矿物的合成及形成机制[J]. 硅酸盐学报, 2008, 36(1): 78–81. 
MA Suhua, SHEN Xiaodong, HUANG Yeping, et al. J Chin Ceram Soc, 2008, 36(1): 78–81.
[8] LI X, ZHANG Y, SHEN X, et al. Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide[J]. Cem Concr Res, 2014, 55: 79–87.
[9] 耿永娟, 李邵纯, 李秋义, 等. 利用石油焦脱硫灰渣制备硫铝酸盐水泥[J]. 环境工程学报, 2016, 10(8): 4462–4466.
GENG Yongjuan, LI Shaochun, LI Qiuyi, et al. Chin J Environ Eng (in Chinese), 2016, 10(8): 4462–4466.
[10] IRVIN A C, MARIA C G J. Incorporation of coal combustion residuals into calcium sulfoaluminate-belite cement clinkers[J]. Cem Concr Compos, 2012, 34(8): 893–902.
[11] 施惠生, 吴凯, 郭晓潞, 等. 垃圾焚烧飞灰研制硫铝酸盐水泥及其水化特性[J]. 建筑材料学报, 2011, 14(6): 730–735,751.
SHI Huisheng, WU Kai, GUO Xiaolu, et a1. J Build Mater, 2011, 14(6): 730–735, 751.
[12] 杨南如. 水热合成β-C2S的研究进展[J]. 建筑材料学报, 2011, 14(2): 19–25.
YANG Nanru. J Build Mater (in Chinese), 2011, 14(2): 19–25.
[13] GONG Y F, FANG Y H. Preparation of belite cement from stockpiled high-carbon fly ash using granule-hydrothermal synthesis method[J]. Construct Build Mater, 2016, 111: 175–181.
[14] 方永浩, 承礼清, 龚泳帆, 等. 粉煤灰贝利特水泥的研究现状与前景[J]. 硅酸盐学报, 2015, 43(2): 165–173.
FANG Yonghao, CHENG Liqing, GONG Yongfan, et al. J Chin Ceram Soc, 2015, 43(2): 165–173.
[15] LUDWIG H M, ZHANG W S. Research review of cement clinker chemistry[J]. Cem Concr Res, 2015, 78: 24–37.
[16] RUNGCHET A, CHINDAPRASIRT P, et al. Hydrothermal synthesis of calcium sulfoaluminate-belite cement from industrial waste materials[J]. J Clean Prod, 2016, 115: 273–283.
[17] 潘国耀, 毛若卿, 张惠玲. 低硫型水化硫铝酸钙(AFm)脱水相及其水化特性研究[J]. 武汉工业大学学报, 1997, 19(3): 28–30. 
PAN Guoyao, MAO Ruoqing, ZHANG Huiling. J Wuhan Polytech Univ (in Chinese), 1997, 19(3): 28–30.
[18] 许仲梓, 周伟玲, 邓敏. 硫铝酸盐水泥体系高温稳定性研究[J]. 硅酸盐学报, 2001, 29(2):104–108.
XU Zhongzi, ZHOU Weiling, DENG Min. J Chin Ceram Soc, 2001, 29(2): 104–108.
[19] 杨南如, 岳文海. 无机非金属材料图谱手册[M]. 武汉: 武汉工业大学出版社, 2000: p5, p45, p201, p245, p256, p257, p305.
YANG Nanru, YUE Wenhai. The Handbook of Inorganic Metalloid Materials Atlas (in Chinese). Wuhan: Wuhan University of Technology Press, 2000: p5, p45, p201, p245, p256, p257, p305.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com