首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
基于多种性能要求的混凝土组成设计方法
作者:史才军1 王德辉1 安晓鹏2 焦登武1  晃1 
单位:1. 湖南大学土木工程学院 绿色先进土木工程材料及应用技术湖南省重点实验室 长沙 410082 2. 中国建筑材料科学研究总院 绿色建材国家重点实验室 北京 100024 
关键词:组成设计 最紧密堆积 富余浆体理论 单纯型重心设计法 混凝土组成与性能关系 
分类号:TU528
出版年,卷(期):页码:2018,46(2):230-238
DOI:
摘要:

提出了一种基于多种性能要求的混凝土组成设计方法。首先采用混合砂石容重法确定粗、细骨料的最紧密堆积和骨料间最小空隙率;其次结合Bowromi公式和耐久性要求,确定混凝土的水胶比,然后根据骨料间的最小孔隙率和达到所需工作性或流变特性的骨料表面富余浆体厚度,得到混凝土中浆体量,通过调整减水剂和黏度改性剂来调节混凝土的屈服应力和塑性黏度,改善混凝土的工作性能。在此基础上采用单纯型重心设计法设计胶凝材料组成,用最少的实验量建立混凝土性能与胶凝材料组成间的关系,最后根据对混凝土不同性能的要求,确定满足要求的胶凝材料组成范围。同时,该方法可用于预测不同胶凝材料组成制备的混凝土性能。

A method for mixture design of concrete with multiple performance requirements is proposed. Firstly, the maximal unit masses of fine and coarse aggregates are obtained through measuring their bulk densities. Considering the Bowromi equation and the durability requirements, the water-cement ratio are determined. After that, the excess paste thickness achieves the required workability can be calculated according to the minimum porosity between the aggregates and then the paste content can be obtained. By adjusting the dosage of superplasticizer or viscosity modifying agent, the yield stress and viscosity of concrete can be adjusted as required. The composition of cementitious materials is designed by using simplex centroid design method and then its relationships with the properties of concrete are established. In the last, the range of cementitious materials composition can be obtained according to the requirements for different properties of concrete. In addition, this method can also be used to predict the performances of concrete with different compositions of cementitious materials.

基金项目:
国家重点研发计划(2017YFB0310101);国家自然科学基金(U1305243);国家国际科技合作专项(2015DFA50880)。
作者简介:
史才军(1963—),男,博士,教授。
参考文献:
[1] BHARATKUMAR B H, NARAYANAN R, RAGHUPRASAD B K,  et al. Mix proportioning of high performance concrete[J]. Cem Concr Comp, 2001, 23(1): 71–80.
[2] HOVER K C. Concrete mixture proportioning with water-reducing admixtures to enhance durability: A quantitative model[J]. Cem Concr Comp, 1998, 20(2/3): 113–119.
[3] MEHTA P K, AITCIN P C. Microstructural basis of selection of materials and mix proportions for high-strength concrete[J]. Special Publication, 1990, 121: 265–286.
[4] MEHTA P K, AÏTCIN P. Principles underlying production of high-performance concrete[J]. Cem Concr Aggreg, 1990, 12(2): 70–78.
[5] ALONZO O, BARRINGER W L, BARTON S G. Guide for selecting proportions for high-strength concrete with portland cement and fly ash[J]. ACI Mater J, 1993, 90(3): 272–283.
[6] HELENE P R, TERZIAN P. Manual de Dosagem e Controle do Concreto Pini[M]. 1992.
[7] TORALLES CARBONARI B. M. Estudio paramétrico de variables y componentes relativos a la dosificación y produción de hormigones de altas prestaciones[D]. ETSECCPB-Universitat Politécnica de Catalunya, Departament D’Enginyeria de la Contrucció, Barcelona, Espanha, 1996. 
[8] TORALLES CARBONARI B M, CARBONARI G. Concreto de alto desempenho: do laboratório à obra[J]. Florianó polis: ENTAC––Encontro Nacional da Tecnologia do Ambiente Constru??do, Florianópolis, 1998, 7: 25-29.
[9] CHANG P K. An approach to optimizing mix design for properties of high-performance concrete[J]. Cem Concr Res, 2004, 34(4): 623–629.
[10] ZAIN M F M, ISLAM M N, BASRI I H. An expert system for mix design of high performance concrete[M]. Elsevier Science Ltd., 2005: 325–337. 
[11] YU R, SPIESZ P, BROUWERS H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Cem Concr Res, 2014, 56(2): 29–39.
[12] SHI C, WU Z, LV K X, et al. A review on mixture design methods for self-compacting concrete[J]. Construc Build Mater, 2015, 84: 387–398.
[13] WU L, FARZADNIA N, SHI C, et al. Autogenous shrinkage of high performance concrete: A review[J]. Constr Build Mater, 2017, 149: 62–75.
[14] SCHEFFÉ H. Experiments with mixtures[J]. J Royal Statist Soc: Series B (Methodological), 1958, 20(2): 344–360.
[15] Douglas E, POUSKOULELI G. Prediction of compressive strength of mortars made with portland cement-blast-furnace slag-fly ash blends[J]. Cem Concr Res, 1991, 21(4): 523–534.
[16] WANG D, CHEN Z. On predicting compressive strengths of mortars with ternary blends of cement, GGBFS and fly ash[J]. Cem Concr Res, 1997, 27(4): 487–493.
[17] 孙伟, 严捍东. 复合胶凝材料组成与混凝土抗压强度定量关系研 究[J]. 东南大学学报(自然科学版). 2003(4): 450–453.
SUN W, YAN H. J Southeast Univ (Nat Sci Ed) (in Chinese), 2003(4): 450–453.
[18] SHI C, HU S. Cementitious properties of ladle slag fines under autoclave curing conditions[J]. Cem Concr Res, 2003, 33(11): 1851–1856.
[19] SHI Z, SHI C, ZHAO R, et al. Factorial design method for designing ternary composite cements to mitigate ASR expansion [J]. J Mater Civ Eng, 2016, 28(9): 4016061–4016064.
[20] ASTM. C 29, Standard test method for bulk density (" Unit Weight") and voids in aggregate[S]. American Society for Testing and Materials, Annual Book, Pennsylvania, USA, 2009.
[21] GB/T 50476—2008. 混凝土结构耐久性设计规范[S]. 2009.
[22] SUN K, ZHOU X, GONG C, et al. Influence of paste thickness on coated aggregates on properties of high-density sulphoaluminate cement concrete[J]. Construct Build Mater, 2016, 115: 125–131.
[23] GONG L L, JIN N G, HE Xiao-Yong, et al. New method of mix design for self-compacting concrete based on aggregate information[J]. J Zhejiang Univ, 2010, 143:566–573. 
[24] 焦登武, 安晓鹏, 史才军, 等. 骨料裹浆厚度对混凝土流变性能的影响[J]. 硅酸盐学报. 2017, 45(9): 1360-1366.
JIAO D, AN X, SHI C, et al. J Chin Ceram Soc (in Chinese), 2017, 45(9): 1360-1366.
[25] 焦登武. 基于流变特性的混凝土组成设计方法[D]. 北京: 中国建筑材料科学研究总院, 2017.
JIAO D. A method for mixture design of concrete based on rheological behavior (in Chinese, dissertation). Beijing: China Building Materials Academy, 2017.
[26] ASTM C1581-04. Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage[S]. ASTM International, West Conshohocken, PA, 2004, 4(2): 787–792.
[27] NT Build 492. Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments[S]. Nordtest method, 1999.
[28] GB/T 50082-2009. 普通混凝土长期性能和耐久性能试验方法[S]. 2009.
[29] ASTM C1260. Standard test method for potential alkali reactivity of aggregates (mortar-bar method)[S]. Section, 2007, 4: 676–680.
[30] SHEHATA M H, THOMAS M D A. The effect of fly ash composition on the expansion of concrete due to alkali–silica reaction[J]. Cem Concr Res, 2000, 30(7): 1063–1072.
[31] GIFFORD P M, GILLOTT J E. Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete[J]. Cem Concr Res, 1996, 26(1): 21–26.
[32] 田培, 姚燕, 李建勇, 等. 高性能混凝土耐久性的综合研究[J]. 中国建材科技. 2001(6): 16–21.
TIAN P, YAO Y, LI J, et al. China Build Mater Sci Technol (in Chinese), 2001(6): 16–21.
[33] WANG D, ZUO Y, OUYANG S. Chloride ions diffusion properties in high performance concrete with different possolantic materials[J]. J Chin Ceram Soc, 2004, 32(7): 858–861.
[34] HELMUTH R. Fly ash in cement and concrete[M]. Portland Cement Association, Skokie, IL, USA 1987.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com