[1] 余成行, 刘敬宇, 王磊. C60超高泵送混凝土的配制与施工[J]. 混凝土, 2008(6): 71–76.
YU Chenghang, LIU Jingyu, WANG Lei. Concrete (in Chinese), 2008, (6): 71–76.
[2] 张莉莉, 吴华, 黄天贵, 等. 超高层混凝土泵送技术研究与应用[J]. 建筑技术, 2015, 46(4): 341–344.
ZHANG Lili, WU Hua, HUANG Tiangui, et al. Archit Technol (in Chinese), 2015, 46(4): 341–344.
[3] 吴斌兴, 陈保钢, 徐建华, 等. 高强高性能混凝土泵送压力损失规分析[J]. 混凝土, 2011, (1): 142–144.
WU Binxing, CHEN Baogang, XU Jianhua, et al. Concrete (in Chinese), 2011, (1): 142–144.
[4] 李立辉, 陈喜旺, 李路明, 等. 自密实混凝土泵送压力变化规律分析[J]. 施工技术, 2016, 45(12): 52–56.
LI Lihui, CHEN Xiwang, LI Luming, et al. Construc Technol (in Chinese), 2016, 45(12): 52–56.
[5] 余成行, 师卫科. 泵送混凝土技术与超高泵送混凝土技术[J]. 商品混凝土, 2011, (10): 29–34.
YU Chenghang, SHI Weike. Ready-mixed Concr (in Chinese), 2011, (10): 29–34.
[6] 赵筠. 混凝土泵送性能的影响因素与试验评价方法[J]. 江西建材, 2014(12): 6–32.
ZHAO Jun. Jiangxi Build Mater (in Chinese), 2014(12): 6–32.
[7] FEYS D, KHAYAT K H. Recent developments in evaluating pumping behavior of flowable and self-consolidating concrte[J]. J Sustain Cem-Based Mater, 2015, 4(3-4): 238–251.
[8] KWON S H, JANG K P, Kim J H, et al. State of the art on prediction of concrete pumping[J]. Int J Concr Struct Mater, 2016, 10(3): 75-85.
[9] JACOBSEN S, HAUGAN L, HAMMER T A, et al. Flow conditions of fresh mortar and concrete in different pipes[J]. Cem Concr Res, 2009, 39: 997-1006.
[10] CHOI M S, PARK S B, KANG S T. Effect of the mineral admixtures on pipe flow of pumped concrete[J]. J Adv Concr Technol, 2015, 13: 489–499.
[11] CHOI M, ROUSSEL N, KIM Y, et al. Lubrication layer properties during concrete pumping[J]. Cem Concr Res, 2013, 45: 69–78.
[12] CHOI M S, KIM Y J, JANG K P, et al. Effect of the coarse aggregate size on pipe flow of pumped concrete[J]. Constr Build Mater, 2014, 66(9): 723–730.
[13] YAMMINE J, CHAOUCHE M, GUERINET M, et al. From ordinary rheology concrete to self compacting concrete: A transition between frictional and hydrodynamic interactions[J]. Cem Concr Res, 2008, 38: 890–896.
[14] KAPLAN D, LARRARD F D, SEDRAN T. Design of concrete pumping circuit[J]. ACI J, 2005, 102(2): 110–107.
[15] MORINAGA M. Pumpability of concrete and pumping pressure in pipe line[C]. Proceedi RILEM Seminar Held in Leeds, 1973(3): 1–39.
[16] SAKUTA M, YAMANE S, KASAMI H, et al. Pumpability and rheological properties of fresh concrete[C]. Proceeding of Conference on Quality Control of Concrete Structures, 1979(2): 125–132.
[17] CHOI M S, KIM Y J, KWON S H. Prediction on pipe flow of pumped concrete based on shear-induced particle migration[J]. Cem Concr Res, 2013, 52: 216–224.
[18] FEYS D, KHAYAT K H, PEREZ-SCHELL A, et al. Relation between Rheological and Tribological Properties of Highly-Workable Concrete, in view of Estimating Pumping Pressures[C]. Proceedings of the Fifth North American Conference on the Design and Use of Self-Consolidating Concrete, Chicago, 2013.
[19] KAPLAN D. Pumping of concretes[D]. French: LCPC, 2001.
[20] INGBER M S, GRAHAM A L, MONDY L A, et al. An improved constitutive model for concentrated suspensions accounting for shear-induced particle migration rate dependence on particle radius[J]. Int J Multiphase Flow, 2009, 35: 270–276.
[21] CHOI M S. Numerical Prediction on the Effects of the Coarse Aggregate Size to the Pipe Flow of Pumped Concrete[J]. J Adv Concr Technol, 2014, 12: 239–249.
[22] LE H D, SCHUTTER G D, KADRI E H, et al. Velocity Profile of Self Compacting Concrete and Traditional Concrete Flowing in a Half Open Pipe[C]. Proceedings of the 3th International Conference on Concrete Repair, 2012: 1382–1387.
[23] CYR M, LEGRAND C, MOURET M. Study of the shear thickening effect of superplasticizers on the rheological behavior of cement pastes containing or not mineral additives[J]. Cem Concr Res, 2000, 30: 1477–1483.
[24] YAHIA A. Shear-thickening behavior of high-performance cement grouts-Influence mix-design parameters[J]. Cem Concr Res, 2011, 41: 230–235.
[25] YAHIA A. Effect of soild concentration and shear rate on shear-thickening response of high-performance cement suspensions[J]. Constr Build Mater, 2014, 53: 517–521.
[26] FEYS D, VERHOEVEN R, SCHUTTER G D. Why is fresh self-compacting concrete shear thickening[J]. Cem Concr Res, 2009, 39: 510–523.
[27] ROUSSEL N, LEMAITRE A, FLATT R J, et al. Steady state flow of cement suspensions: A micromechanical state of the art[J]. Cem Concr Res, 2010, 40: 77-84.
[28] YAHIA A, KHAYAT K H. Analytical models for estimating yield stress of high-performance pseudo plastic grout[J]. Cem Concr Res, 2001, 31: 731–738.
[29] FEYS D, VERHOEVEN R, SCHUTTER G D. Fresh self-compacting concrete: a shear thickening material[J]. Cem Concr Res, 2008, 38: 920–929.
[30] SAKAI E, KAKINUMA Y, YAMAMOTO K, et al. Relation between the Shape of Silica Fume and the Fluidity of Cement Paste at Low Water to Powder Ratio[J]. J Adv Concr Technol, 2009, 7(1): 13–20.
[31] TAKAHASHI K, BIER T A. Mechanisms for the Degradation in Rheological Properties of Mortars after Pumping[C]. Proceedings of the Fifth North American Conference on the Design and Use of Self-Consolidating Concrete, Chicago, 2013.
[32] FEYS D, SCHUTTER G D. Changes in rheology of self-consolidating concrete induced by pumping[J]. Mater Design, 2016, 49: 4657–4677.
[33] KHATIB R. Analysis and prediction of pumping characteristics of high-strength self-consolidating concrete[D]. Canada: Sherbrooke, 2013.
[34] 罗碧丹, 刘文利, 林伟才. 混凝土泵送前后性能的对比试验研 究[J]. 混凝土, 2015(4): 123–126.
LUO Bidan, LIU Wenli, LIN Weicai. Concrete (in Chinese), 2015(4): 123–126.
[35] RIDING K A, FEYS D, MALONE T. Best practices for concrete pumping[R]. K-TRAN: KSU-14-2, Kansas, 2016.
[36] KWON S H, PARK C K, JEONG J H, et al. Prediction of Concrete Pumping: Part Ⅱ—Analytical Prediction and Experimental Verification[J]. ACI J, 2013, 110: 657–667.
[37] SINGH B B. Some issues related to pumping of concrete[J]. Indian Concr J, 2004: 41–44.
[38] MECHTCHERINE V, NERELLA V N, KASTEN K. Testing pumpability of concrete using Sliding Pipe Rheometer[J]. Constr Build Mater, 2014, 53: 312–323.
|