首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
新拌混凝土可泵性的研究进展
作者:阎培渝 黎梦圆 韩建国 赵晓 
单位:清华大学土木工程系 北京 100084 
关键词:新拌混凝土 可泵性 流变学 润滑层 剪切滑移层 评估模型 测试方法 
分类号:TQ178
出版年,卷(期):页码:2018,46(2):239-246
DOI:
摘要:
综述了新拌混凝土的可泵性的近期理论研究成果。介绍了新拌混凝土的稳定流动状态,分析了对新拌混凝土与泵管壁之间的润滑层和剪切滑移层的状态与作用。讨论了新拌混凝土的流变性能。除对新拌混凝土的流变模型进行分析外,还描述了新拌混凝土在泵送前后的流变性能的差异。对目前较为认可的新拌混凝土可泵性评估模型和测试方法作了评述。

Recent theoretical studies on the pumpability of fresh concrete were summarized and analyzed. First, the steady flow states of fresh concrete (i.e., lubrication layer and shear slip layer) were introduced. The rheological properties of fresh concrete were also presented. In addition to the analysis of the rheological models of fresh concrete, a phenomenon of variation on the rheological properties of fresh concrete before pumping and after pumping was described. An overview of generally recognized evaluation theory and the latest test equipment of pumpability of fresh concrete was given.

基金项目:
国家重点研发计划项目(No. 2017YFB0310101),国家自然科学基金项目(No. 51678343)
作者简介:
阎培渝(1955—),男,博士,教授。
参考文献:
[1] 余成行, 刘敬宇, 王磊. C60超高泵送混凝土的配制与施工[J]. 混凝土, 2008(6): 71–76.
YU Chenghang, LIU Jingyu, WANG Lei. Concrete (in Chinese), 2008, (6): 71–76.
[2] 张莉莉, 吴华, 黄天贵, 等. 超高层混凝土泵送技术研究与应用[J]. 建筑技术, 2015, 46(4): 341–344.
ZHANG Lili, WU Hua, HUANG Tiangui, et al. Archit Technol (in Chinese), 2015, 46(4): 341–344.
[3] 吴斌兴, 陈保钢, 徐建华, 等. 高强高性能混凝土泵送压力损失规分析[J]. 混凝土, 2011, (1): 142–144.
WU Binxing, CHEN Baogang, XU Jianhua, et al. Concrete (in Chinese), 2011, (1): 142–144.
[4] 李立辉, 陈喜旺, 李路明, 等. 自密实混凝土泵送压力变化规律分析[J]. 施工技术, 2016, 45(12): 52–56.
LI Lihui, CHEN Xiwang, LI Luming, et al. Construc Technol (in Chinese), 2016, 45(12): 52–56.
[5] 余成行, 师卫科. 泵送混凝土技术与超高泵送混凝土技术[J]. 商品混凝土, 2011, (10): 29–34.
YU Chenghang, SHI Weike. Ready-mixed Concr (in Chinese), 2011, (10): 29–34.
[6] 赵筠. 混凝土泵送性能的影响因素与试验评价方法[J]. 江西建材, 2014(12): 6–32.
ZHAO Jun. Jiangxi Build Mater (in Chinese), 2014(12): 6–32.
[7] FEYS D, KHAYAT K H. Recent developments in evaluating pumping behavior of flowable and self-consolidating concrte[J]. J Sustain Cem-Based Mater, 2015, 4(3-4): 238–251.
[8] KWON S H, JANG K P, Kim J H, et al. State of the art on prediction of concrete pumping[J]. Int J Concr Struct Mater, 2016, 10(3): 75-85.
[9] JACOBSEN S, HAUGAN L, HAMMER T A, et al. Flow conditions of fresh mortar and concrete in different pipes[J]. Cem Concr Res, 2009, 39: 997-1006.
[10] CHOI M S, PARK S B, KANG S T. Effect of the mineral admixtures on pipe flow of pumped concrete[J]. J Adv Concr Technol, 2015, 13: 489–499.
[11] CHOI M, ROUSSEL N, KIM Y, et al. Lubrication layer properties during concrete pumping[J]. Cem Concr Res, 2013, 45: 69–78.
[12] CHOI M S, KIM Y J, JANG K P, et al. Effect of the coarse aggregate size on pipe flow of pumped concrete[J]. Constr Build Mater, 2014, 66(9): 723–730.
[13] YAMMINE J, CHAOUCHE M, GUERINET M, et al. From ordinary rheology concrete to self compacting concrete: A transition between frictional and hydrodynamic interactions[J]. Cem Concr Res, 2008, 38: 890–896.
[14] KAPLAN D, LARRARD F D, SEDRAN T. Design of concrete pumping circuit[J]. ACI J, 2005, 102(2): 110–107.
[15] MORINAGA M. Pumpability of concrete and pumping pressure in pipe line[C]. Proceedi RILEM Seminar Held in Leeds, 1973(3): 1–39.
[16] SAKUTA M, YAMANE S, KASAMI H, et al. Pumpability and rheological properties of fresh concrete[C]. Proceeding of Conference on Quality Control of Concrete Structures, 1979(2): 125–132.
[17] CHOI M S, KIM Y J, KWON S H. Prediction on pipe flow of pumped concrete based on shear-induced particle migration[J]. Cem Concr Res, 2013, 52: 216–224.
[18] FEYS D, KHAYAT K H, PEREZ-SCHELL A, et al. Relation between Rheological and Tribological Properties of Highly-Workable Concrete, in view of Estimating Pumping Pressures[C]. Proceedings of the Fifth North American Conference on the Design and Use of Self-Consolidating Concrete, Chicago, 2013.
[19] KAPLAN D. Pumping of concretes[D]. French: LCPC, 2001.
[20] INGBER M S, GRAHAM A L, MONDY L A, et al. An improved constitutive model for concentrated suspensions accounting for shear-induced particle migration rate dependence on particle radius[J]. Int J Multiphase Flow, 2009, 35: 270–276.
[21] CHOI M S. Numerical Prediction on the Effects of the Coarse Aggregate Size to the Pipe Flow of Pumped Concrete[J]. J Adv Concr Technol, 2014, 12: 239–249.
[22] LE H D, SCHUTTER G D, KADRI E H, et al. Velocity Profile of Self Compacting Concrete and Traditional Concrete Flowing in a Half Open Pipe[C]. Proceedings of the 3th International Conference on Concrete Repair, 2012: 1382–1387.
[23] CYR M, LEGRAND C, MOURET M. Study of the shear thickening effect of superplasticizers on the rheological behavior of cement pastes containing or not mineral additives[J]. Cem Concr Res, 2000, 30: 1477–1483.
[24] YAHIA A. Shear-thickening behavior of high-performance cement grouts-Influence mix-design parameters[J]. Cem Concr Res, 2011, 41: 230–235.
[25] YAHIA A. Effect of soild concentration and shear rate on shear-thickening response of high-performance cement suspensions[J]. Constr Build Mater, 2014, 53: 517–521.
[26] FEYS D, VERHOEVEN R, SCHUTTER G D. Why is fresh self-compacting concrete shear thickening[J]. Cem Concr Res, 2009, 39: 510–523.
[27] ROUSSEL N, LEMAITRE A, FLATT R J, et al. Steady state flow of cement suspensions: A micromechanical state of the art[J]. Cem Concr Res, 2010, 40: 77-84.
[28] YAHIA A, KHAYAT K H. Analytical models for estimating yield stress of high-performance pseudo plastic grout[J]. Cem Concr Res, 2001, 31: 731–738.
[29] FEYS D, VERHOEVEN R, SCHUTTER G D. Fresh self-compacting concrete: a shear thickening material[J]. Cem Concr Res, 2008, 38: 920–929.
[30] SAKAI E, KAKINUMA Y, YAMAMOTO K, et al. Relation between the Shape of Silica Fume and the Fluidity of Cement Paste at Low Water to Powder Ratio[J]. J Adv Concr Technol, 2009, 7(1): 13–20.
[31] TAKAHASHI K, BIER T A. Mechanisms for the Degradation in Rheological Properties of Mortars after Pumping[C]. Proceedings of the Fifth North American Conference on the Design and Use of Self-Consolidating Concrete, Chicago, 2013.
[32] FEYS D, SCHUTTER G D. Changes in rheology of self-consolidating concrete induced by pumping[J]. Mater Design, 2016, 49: 4657–4677.
[33] KHATIB R. Analysis and prediction of pumping characteristics of high-strength self-consolidating concrete[D]. Canada: Sherbrooke, 2013.
[34] 罗碧丹, 刘文利, 林伟才. 混凝土泵送前后性能的对比试验研   究[J]. 混凝土, 2015(4): 123–126.
LUO Bidan, LIU Wenli, LIN Weicai. Concrete (in Chinese), 2015(4): 123–126.
[35] RIDING K A, FEYS D, MALONE T. Best practices for concrete pumping[R]. K-TRAN: KSU-14-2, Kansas, 2016.
[36] KWON S H, PARK C K, JEONG J H, et al. Prediction of Concrete Pumping: Part Ⅱ—Analytical Prediction and Experimental Verification[J]. ACI J, 2013, 110: 657–667.
[37] SINGH B B. Some issues related to pumping of concrete[J]. Indian Concr J, 2004: 41–44.
[38] MECHTCHERINE V, NERELLA V N, KASTEN K. Testing pumpability of concrete using Sliding Pipe Rheometer[J]. Constr Build Mater, 2014, 53: 312–323.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com