首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
CO2对水泥石腐蚀机理及密封性的影响研究进展
作者:冯福平1 刘子玉1 路大凯2 张德平1 3 潘若生2 严茂森1 丛子渊1 
单位:1. 东北石油大学石油工程学院 黑龙江 大庆 163318 2. 中国石油吉林油田公司油气工程研究院 辽宁 松原 138001  3. 中国石油吉林油田公司CO2捕集埋存与提高采收率开发公司 辽宁 松原 138000 
关键词:二氧化碳 水泥石 腐蚀机理 动力学反应 渗透率 自密封 
分类号:TE256
出版年,卷(期):页码:2018,46(2):247-255
DOI:
摘要:

CO2对水泥石的腐蚀加剧了长期埋存与驱油期间CO2沿井筒逃逸的风险,CO2环境下水泥石的长期密封完整性是制约该项技术能否顺利实施的关键。总结了CO2对水泥石的腐蚀机理,重点阐述了CO2对水泥石的腐蚀规律、水泥石物性的变化规律及其内部各反应区域的特征,并在此基础上分析了CO2腐蚀对水泥石微裂缝渗透率的影响机理及自密封条件,最后根据目前的研究现状展望了该领域未来的发展方向。

In geological carbon sequestration (GCS) and CO2 flooding process, CO2 will corrode cement sheath and may have a great risk for its leakage along the wellbore. Therefore, the long-term integrity of cement sheath is a key issue to GCS and flooding process in CO2 circumstance. This paper summarized the corrosion mechanism of cement sheath, and focused on the rule of cement CO2 corrosion, the variation characteristics of cement physical properties and the characteristic of chemical reaction zone inside cement. In addition, this paper also analyzed the effect of CO2 corrosion on the cement fractures permeability and the condition of cement fractures self-sealing. This paper revealed some prospects in this field.

基金项目:
中国石油科技创新基金(2017D-5007-0310);“十三五”国家科技重大专项(2016ZX05016-002);国家自然科学基金(51404071、51774094)联合资助。
作者简介:
冯福平(1982—),男,博士,副教授。
参考文献:
[1] 柏明星, REINICKE M, 艾池, 等. 二氧化碳地质存储过程中沿井筒渗漏定性分析[J]. 地质论评, 2013, 59(1): 107–112.
BAI Mingxing, REINICKE M, AI Chi, et al. Geol Rev (in Chinese), 2013, 59(1): 107–112.
[2] WARDA A. Carbonation of cement-based materials: Challenges and opportunities[J]. Construct Build Mater, 2016, 120: 558–570.
[3] LANGSTON M V, HOADLEY S F and YOUNG D N. Definitive CO2 flooding response in the SACROC unit[C]// SPE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, 1988: 1–5.
[4] ASHOK K S, RONALD S. Understanding the long-term chemical and mechanical integrity of cement in a CCS environment[J]. Energy Procedia, 2011, (4): 5243–5250.
[5] BAI M X , ZHANG Z, FU X F. A review on well integrity issues for CO2 geological storage and enhanced gas recovery[J]. Renew Sustain Energy Rev, 2016, 59: 920–926.
[6] BENSON S M, COLE D R. CO2 sequestration in deep sedimentary formations[J]. Elements, 2008, 4(5): 325–331.
[7] OLDENBURG C M, BRYANT S L, NICOT J P. Certification framework based on effective trapping for geologic carbon sequestration[J]. Int J Greenhouse Gas Control, 2009(3): 444–457.
[8] GASADA SE, BACHU S, CELIA M A. Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin[J]. Environ Geol, 2004, 46: 707–720.
[9] GAUS I. Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks[J]. Int J Greenhouse Gas Control, 2010, 4: 73–89.
[10] LECAMPION B, QUESADA D, LOIZZO M, et al. Interface debonding as a controlling mechanism for loss of well integrity: importance for CO2 injector wells[J]. Energy Procedia, 2011(4): 5219–5226.
[11] HEEGE J H, ORLIC B, HOEDEMAN G C. Characteristics of mechanical wellbore failure and damage:Insights of discrete element modelling and application to CO2 storage[C]// 49th US Rock Mechanics / Geomechanics Symposium , San Francisco, USA, 2015: 1–4 
[12] CAREY J W. Geochemistry of wellbore integrity in CO2 sequestration: Portland cement-steel-brine-CO2 interactions[J]. Rev Mineral Geochem, 2013, 77: 505–539.
[13] BAI M X, SUN J P, SONG K P, et al. Risk assessment of abandoned wells affected by CO2[J]. Environ Earth Sci, 2015, 73(11): 6827–6837.
[14] 孔祥明, 卢子臣, 张朝阳. 水泥水化机理及聚合物外加剂对水泥水化影响的研究进展[J]. 硅酸盐学报, 2017, 45(2): 274–281.
KONG Xiangming, LU Zichen, ZHANG Chaoyang. J Chin Ceram Soc, 2017, 45(2): 274–281.
[15] RUNAR N, SAEED S, ROBERT G L. Effect of dynamic loading on wellbore leakage for the wabamun area CO2 sequestration project[C]// Canadian Unconventional Resources Conference, Calgary, Canada, 2011: 1–6
[16] 姚晓. 二氧化碳对油井水泥石的腐蚀及其防护措施[J]. 钻井液与完井液, 1998, 15(1): 8–12.
YAO Xiao. Drill Fluid Completion Fluid (in Chinese), 1998, 15(1): 8–12.
[17] 张景富, 徐明, 朱健军, 等. 二氧化碳对油井水泥石的腐蚀[J]. 硅酸盐学报, 2007, 35(12): 1651–1656.
ZHANG Jingfu, XU Ming, ZHU Jianjun, et al. J Chin Ceram Soc, 2007, 35(12): 1651–1656.
[18] ABDOULGHAFOUR H, LUQUOT L, GOUZE P. Characterization of the mechanisms controlling the permeability changes of fractured cements flowed through by CO2 rich brine[J]. Environ Sci Technol, 2013, 47: 10332–10338.
[19] 郑友志, 佘朝毅, 姚坤全, 等. 川渝地区含硫气井固井水泥环界面腐蚀机理分析[J]. 天然气工业, 2011, 31(12): 85–89.
ZHENG Youzhi, SHE Chaoyi, YAO Kunquan, et al. Nat Gas Ind (in Chinese), 2011, 31(12): 85–89.
[20] GLEN B. Improving wellbore seal integrity in CO2 injection wells[C]// SPE/IADC Drilling Conference and Exhibition, Amsterdam, Netherlands, 2009: 1–7.
[21] ASHOK K S, REDDY B R, FENG L, et al. Reaction of CO2 with Portland cement at downhole conditions and the role of pozzolanic supplements[C]// SPE International Symposium on Oilfield Chemistry, Texas, USA, 2009: 1–9.
[22] 侯贵华, 卢豹, 郜效娇, 等. 新型低钙水泥的制备及其碳化硬化过程[J]. 硅酸盐学报, 2016, 44(2): 286–291.
HOU Guihua, LU Bao, GAO Xiaojiao, et al. J Chin Ceram Soc, 2016, 44(2): 286–291.
[23] 李冠颖, 郭俊志, 谢其泰, 等. 二氧化碳储存环境对油井水泥性质影响之研究[J]. 岩土力学, 2011, 32(增2): 346–350.
LEE Guanyin, KUO Chunchin, HSIEH Chitai, et al. Rock Soil Mech, 2011, 32(s2): 346–350.
[24] 周仕明, 王立志, 杨广国, 等. 高温环境下CO2腐蚀水泥石规律的实验研究[J]. 石油钻探技术, 2008, 36(6): 9–13.
ZhOU Shiming, WANG Lizhi, YANG Guangguo, et al. Petrol Drill Tech (in Chinese), 2008, 36(6): 9–13.
[25] 郭建华. 高温高压高含硫气井井筒完整性评价技术研究与应用[D]. 成都: 西南石油大学, 2013.
GUO Jianhua. Research and application on HTHP sour gas well integrity (in Chinese, dissertation). Chengdu: Southwest Petroleum University, 2013.
[26] WIGAND M, KASZUBA J P, CAREY J W, et al. Geochemical effects of CO2 sequestration on fractured wellbore cement at the cement/caprock interface[J]. Chem Geol, 2009, 265: 122–133.
[27] NICOLAS J, JACQUES P, VINCENT L, et al. Armouring of well cement in H2S-CO2 saturated brine by calcite coating-experiments and numerical modeling[J]. Appl Geochem, 2012, 27: 782–795.
[28] HUET B, TASOTI V and KHALFALLAH I. A review of Portland cement carbonation mechanisms in CO2 rich[J]. Energy Procedia, 2011, 4: 5275–5282.
[29] KIM T, LEE H K, KIM G D, et al. Analysis on the chemical and mechanical stability of the grouting cement for CO2 injection well[J]. Energy Procedia, 2013, 37: 5702–5709.
[30] 严思明, 戴珍珍, 裴贵彬, 等. 气态二氧化碳对气井固井水泥石的腐蚀分析[J]. 天然气工业, 2010, 30(9): 55–59.
YAN Siming, Dai Zhenzhen, Pei Guibin, et al. Nat Gas Ind (in Chinese), 2010, 30(9): 55–59.
[31] CONNELL L, DAVID D, MENG L, et al. An investigation into the integrity of wellbore cement in CO2 storage wells: Core flooding experiments and simulations[J]. Int J Greenhouse Gas Control, 2015, 37: 24–420.
[32] KUTCHKO B G, STRAZISAR B R, LOWRY D A, et al. Degradation of well cement by CO2 under geologic sequestration conditions[J]. Environ Sci Technol, 2007, 41: 4787–4792.
[33] JAMES C W, STEVEN J B, RICHARD M, et al. Fully coupled modeling of long term cement well seal stability in the presence of CO2[J]. Energy Procedia, 2011(4): 5162–5169.
[34] LAURE D, MATTEO L, BRUNO H, et al. Stability of a leakage pathway in a cemented annulus[J]. Energy Procedia, 2011(4): 5283–5290.
[35] MASON H E, FRANE D, WALSH W L, et al. Chemical and mechanical properties of wellbore cement altered by CO2-rich brine using a multianalytical approach[J]. Environ Sci Technol, 2013, 47 (3): 1745–1752.
[36] ZHANG L W, DAVID A D, DAVID V N, et al. Rate of H2S and CO2 attack on pozzolan-amended class H well cement under geologic sequestration conditions[J]. Int J Greenhouse Gas Control, 2012, 27: 299–308.
[37] KUTCHKO B G, STRAZISAR B R, LOWRY G V, et al. Rate of CO2 attack on hydrated class H well cement under geologic sequestration conditions[J]. Environ Sci Technol, 2008, 42: 6237–6242.
[38] BARLET G V, RIMMELE G, GOFFE B, et al. Mitigation strategies for the risk of CO2 migration through wellbores[C]// IADC/SPE Drilling Conference, Florida, USA, 2006: 1–17.
[39] HOUST YF, WITTMANN F H. Depth profiles of carbonates formed during natural carbonation[J]. Cem Concr Res, 2002, 32: 1923–1930.
[40] GUIGLIA M, TALIANO M. Comparison of carbonation depths measured on in field exposed existing strctures with predictions made using fib-model code[J]. Cem Concr Res, 2013, 38: 92–108.
[41] SIRIWARDENA D P, PEETHAMPARAN S. Quantification of CO2 sequestration capacity and carbonation rate of alkaline industrial byproducts[J]. Construc Build Mater, 2015, 91: 216–224.
[42] ZHANG L, DZOMBAK D A, NAKLES D V, et al. Characterization of Pozzolan-amended wellbore cement exposed to CO2 and H2S gas mixtures under geologic carbon storage conditions[J]. Int J Greenhouse Gas Control, 2013, 19: 358–368.
[43] FABBRI A, JACQUEMET N, SEYEDI D. A chemo-mechanical model of oil well cement carbonation under CO2 geological storage conditions[J]. Cem Concr Res, 2012, 42 (1): 8–19.
[44] LI Q Y, YUN M L, KATHARINE M F, et al. Chemical reactions of portland cement with aqueous CO2 and their impacts on cement’s mechanical properties under geologic CO2 sequestration conditions[J]. Environ Sci Technol, 2015, 49: 6335–6343.
[45] MUSTAFA H O, MILEVA R. An experimental study of the effect of CO2 rich brine on artificially fractured well-cement[J]. Cem Concr Compos, 2014, 45: 201–208.
[46] JOSE C, KOOROSH A. Experimental study of stability and integrity of cement in wellbore used for CO2 storage[J]. Energy Procedia, 2009, (1): 3633–3640.
[47] STUART D C W, WYATT L D F, MASON H E, et al. Permeability of Wellbore-cement fractures following degradation by carbonated brine[J]. Rock Mech Rock Eng, 2013, 46: 455–464.
[48] 冯福平, 艾池, 杨丰宇, 等. 偏心环空层流顶替滞留层边界位置研究[J]. 石油学报, 2010, 31(5): 859–862. 
FENG Fuping, AI Chi, YANG Fengyu, et al. Acta Petrol Sin (in Chinese), 2010, 31(5): 859–862.
[49] 郭辛阳, 步玉环, 沈忠厚, 等. 井下复杂温度条件对固井界面胶结强度的影响[J]. 石油学报, 2010, 31(5): 834–837.
GUO Xinyang, BU Yuhuan, SHEN Zhonghou, et al. Act Petrol Sin (in Chinese), 2010, 31(5): 834–837.
[50] 顾军, 李新宏, 先花, 等. 油井水泥浆与多功能钻井液泥饼界面离子扩散阻碍机理[J]. 石油学报, 2013, 34(2): 359-364.
GU Jun, LI Xinhong, XIAN Hua, et al. Act Petrol Sin (in Chinese), 2013, 34(2): 359–364.
[51] JENA J, PAUL S, HAMIDREZA R, et al. Modeling of the induced chemo-mechanical stress through porous cement mortar subjected to CO2: Enhanced micro-dilatation theory and 14C-PMMA method[J]. Comput Mater Sci, 2013, 69: 466–480.
[52] TIMOTHEUS K T W, SUZANNE J T H, CHRISTOPHER J S. Effect of CO2-induced reactions on the mechanical behaviour of fractured wellbore cement[J]. Geomech Energy Environ, 2016, 7: 26–46.
[53] CLAUS K, LYKOURGOS S, PETER F, et al. Cement self-healing as a result of CO2 leakage[J]. Energy Procedia, 2016, 86: 342–351.
[54] CAREYA J W, MARCUS W, STEVE J C, et al. Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit[J]. Int J Greenhouse Gas Control, 2007: 75–85.
[55] MASON H E , FRANE D, WALSH W L, et al. Chemical and mechanical properties of wellbore cement altered by CO2-rich brine using a multianalytical approach[J]. Environ Sci Technol, 2013, 47: 1745–1752.
[56] NEWELL D L, CAREY J W. Experimental evaluation of wellbore integrity along the cement- rock boundary[J]. Environ Sci Technol, 2013, 47: 276–282.
[57] WALSH S D C, MASON H E, FRANE D, et al. Experimental calibration of a numerical model describing the alteration of cement/caprock interfaces by carbonated brine[J]. Int J Greenhouse Gas Control, 2014, 22: 176–188.
[58] CAO P, KARPYN Z T, LI L. Dynamic alterations in wellbore cement integrity due to geochemical reactions in CO2-rich environments[J]. Water Resour Res, 2013, 49: 4465–4475.
[59] CAO P, KARPYN Z T, LI L.The role of host rock properties in determining potential CO2 migration pathways[J]. Int J Greenhouse Gas Control, 2016, 45: 18–26.
[60] LUQUOT L, ABDOULGHAFOUR H, GOUZE P. Hydro-dynamically controlled alteration of fractured Portland cements flowed by CO2-rich brine[J]. Int J Greenhouse Gas Control, 2013, 16: 167–179.
[61] HUERTA N J, HESSE M A, BRYANT S L, et al. Experimental evidence for self-limiting reactive flow through a fractured cement core: implications for time- dependent wellbore leakage[J]. Environ Sci Techno, 2013, 47: 269–275.
[62] BACHU S, BENNION D B. Experimental assessment of brine and/or CO2 leakage through well cements at reservoir conditions[J]. Int J Greenhouse Gas Control, 2009: 494–501.
[63] ABDOULGHAFOUR H, GOUZEA P, LUQUOT L, et al. Characterization and modeling of the alteration of fractured class-G Portland cement during flow of CO2-rich brine[J]. Int J Greenhouse Gas Control, 2016, 48: 155–170.
[64] HUERTA N J, HESSE M A, BRYANT S L, et al. Reactive transport of CO2-saturated water in a cement fracture: application to wellbore leakage during geologic CO2 storage[J]. Int J Greenhouse Gas Control, 2016, 44: 276–289.
[65] FABBRI A, JACQUEMET N, SEYEDI D M. A chemo-poromechanical model of oilwell cement carbonation under CO2 geological storage conditions[J]. Cem Concr Res, 2012, 42: 8–19.
[66] BRUNET J P L, LI L, ZULEIMA T K, et al. Dynamic evolution of cement composition and transport properties under conditions relevant to geological carbon sequestration[J]. Energy Fuels, 2013, 27: 4208–4220.
[67] GABRIELA D, JORDI C, SALVADOR G, et al. Efficiency of magnesium hydroxide as engineering seal in the geological sequestration of CO2[J]. Int J Greenhouse Gas Control, 2016, 48: 171–185.
[68] ZHANG L W, DAVID A D, DAVID V N, et al. Reactive transport modeling of interactions between acid gas (CO2+H2S) and Pozzolan-amended wellbore cement under geologic carbon sequestration conditions[J]. Energy Fuels, 2013, 27: 6921–6937.
[69] BRUNET J P L, LI L, ZULEIMA T K, et al. Fracture opening or self -sealing:Critical residence time as a unifying parameter for cement-CO2-brine interactions[J]. Int J Greenhouse Gas Control, 2016, 47: 25–37.
[70] TIMOTHEUS K T W, COLIN J P, AMIR R, et al. Reactive transport of CO2-rich fluids in simulated wellbore interfaces:Flow-through experiments on the 1-6 m length scale[J]. Int J Greenhouse Gas Control, 2016, 54: 96–116.
[71] AMIR R, NICK H M, WOLTERBEEK K T, et al. Pore-scale modeling of reactive transport in wellbore cement under CO2 storage conditions[J]. Int J Greenhouse Gas Control, 2012, 11: S67–S77.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com