[1] 柏明星, REINICKE M, 艾池, 等. 二氧化碳地质存储过程中沿井筒渗漏定性分析[J]. 地质论评, 2013, 59(1): 107–112.
BAI Mingxing, REINICKE M, AI Chi, et al. Geol Rev (in Chinese), 2013, 59(1): 107–112.
[2] WARDA A. Carbonation of cement-based materials: Challenges and opportunities[J]. Construct Build Mater, 2016, 120: 558–570.
[3] LANGSTON M V, HOADLEY S F and YOUNG D N. Definitive CO2 flooding response in the SACROC unit[C]// SPE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, 1988: 1–5.
[4] ASHOK K S, RONALD S. Understanding the long-term chemical and mechanical integrity of cement in a CCS environment[J]. Energy Procedia, 2011, (4): 5243–5250.
[5] BAI M X , ZHANG Z, FU X F. A review on well integrity issues for CO2 geological storage and enhanced gas recovery[J]. Renew Sustain Energy Rev, 2016, 59: 920–926.
[6] BENSON S M, COLE D R. CO2 sequestration in deep sedimentary formations[J]. Elements, 2008, 4(5): 325–331.
[7] OLDENBURG C M, BRYANT S L, NICOT J P. Certification framework based on effective trapping for geologic carbon sequestration[J]. Int J Greenhouse Gas Control, 2009(3): 444–457.
[8] GASADA SE, BACHU S, CELIA M A. Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin[J]. Environ Geol, 2004, 46: 707–720.
[9] GAUS I. Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks[J]. Int J Greenhouse Gas Control, 2010, 4: 73–89.
[10] LECAMPION B, QUESADA D, LOIZZO M, et al. Interface debonding as a controlling mechanism for loss of well integrity: importance for CO2 injector wells[J]. Energy Procedia, 2011(4): 5219–5226.
[11] HEEGE J H, ORLIC B, HOEDEMAN G C. Characteristics of mechanical wellbore failure and damage:Insights of discrete element modelling and application to CO2 storage[C]// 49th US Rock Mechanics / Geomechanics Symposium , San Francisco, USA, 2015: 1–4
[12] CAREY J W. Geochemistry of wellbore integrity in CO2 sequestration: Portland cement-steel-brine-CO2 interactions[J]. Rev Mineral Geochem, 2013, 77: 505–539.
[13] BAI M X, SUN J P, SONG K P, et al. Risk assessment of abandoned wells affected by CO2[J]. Environ Earth Sci, 2015, 73(11): 6827–6837.
[14] 孔祥明, 卢子臣, 张朝阳. 水泥水化机理及聚合物外加剂对水泥水化影响的研究进展[J]. 硅酸盐学报, 2017, 45(2): 274–281.
KONG Xiangming, LU Zichen, ZHANG Chaoyang. J Chin Ceram Soc, 2017, 45(2): 274–281.
[15] RUNAR N, SAEED S, ROBERT G L. Effect of dynamic loading on wellbore leakage for the wabamun area CO2 sequestration project[C]// Canadian Unconventional Resources Conference, Calgary, Canada, 2011: 1–6
[16] 姚晓. 二氧化碳对油井水泥石的腐蚀及其防护措施[J]. 钻井液与完井液, 1998, 15(1): 8–12.
YAO Xiao. Drill Fluid Completion Fluid (in Chinese), 1998, 15(1): 8–12.
[17] 张景富, 徐明, 朱健军, 等. 二氧化碳对油井水泥石的腐蚀[J]. 硅酸盐学报, 2007, 35(12): 1651–1656.
ZHANG Jingfu, XU Ming, ZHU Jianjun, et al. J Chin Ceram Soc, 2007, 35(12): 1651–1656.
[18] ABDOULGHAFOUR H, LUQUOT L, GOUZE P. Characterization of the mechanisms controlling the permeability changes of fractured cements flowed through by CO2 rich brine[J]. Environ Sci Technol, 2013, 47: 10332–10338.
[19] 郑友志, 佘朝毅, 姚坤全, 等. 川渝地区含硫气井固井水泥环界面腐蚀机理分析[J]. 天然气工业, 2011, 31(12): 85–89.
ZHENG Youzhi, SHE Chaoyi, YAO Kunquan, et al. Nat Gas Ind (in Chinese), 2011, 31(12): 85–89.
[20] GLEN B. Improving wellbore seal integrity in CO2 injection wells[C]// SPE/IADC Drilling Conference and Exhibition, Amsterdam, Netherlands, 2009: 1–7.
[21] ASHOK K S, REDDY B R, FENG L, et al. Reaction of CO2 with Portland cement at downhole conditions and the role of pozzolanic supplements[C]// SPE International Symposium on Oilfield Chemistry, Texas, USA, 2009: 1–9.
[22] 侯贵华, 卢豹, 郜效娇, 等. 新型低钙水泥的制备及其碳化硬化过程[J]. 硅酸盐学报, 2016, 44(2): 286–291.
HOU Guihua, LU Bao, GAO Xiaojiao, et al. J Chin Ceram Soc, 2016, 44(2): 286–291.
[23] 李冠颖, 郭俊志, 谢其泰, 等. 二氧化碳储存环境对油井水泥性质影响之研究[J]. 岩土力学, 2011, 32(增2): 346–350.
LEE Guanyin, KUO Chunchin, HSIEH Chitai, et al. Rock Soil Mech, 2011, 32(s2): 346–350.
[24] 周仕明, 王立志, 杨广国, 等. 高温环境下CO2腐蚀水泥石规律的实验研究[J]. 石油钻探技术, 2008, 36(6): 9–13.
ZhOU Shiming, WANG Lizhi, YANG Guangguo, et al. Petrol Drill Tech (in Chinese), 2008, 36(6): 9–13.
[25] 郭建华. 高温高压高含硫气井井筒完整性评价技术研究与应用[D]. 成都: 西南石油大学, 2013.
GUO Jianhua. Research and application on HTHP sour gas well integrity (in Chinese, dissertation). Chengdu: Southwest Petroleum University, 2013.
[26] WIGAND M, KASZUBA J P, CAREY J W, et al. Geochemical effects of CO2 sequestration on fractured wellbore cement at the cement/caprock interface[J]. Chem Geol, 2009, 265: 122–133.
[27] NICOLAS J, JACQUES P, VINCENT L, et al. Armouring of well cement in H2S-CO2 saturated brine by calcite coating-experiments and numerical modeling[J]. Appl Geochem, 2012, 27: 782–795.
[28] HUET B, TASOTI V and KHALFALLAH I. A review of Portland cement carbonation mechanisms in CO2 rich[J]. Energy Procedia, 2011, 4: 5275–5282.
[29] KIM T, LEE H K, KIM G D, et al. Analysis on the chemical and mechanical stability of the grouting cement for CO2 injection well[J]. Energy Procedia, 2013, 37: 5702–5709.
[30] 严思明, 戴珍珍, 裴贵彬, 等. 气态二氧化碳对气井固井水泥石的腐蚀分析[J]. 天然气工业, 2010, 30(9): 55–59.
YAN Siming, Dai Zhenzhen, Pei Guibin, et al. Nat Gas Ind (in Chinese), 2010, 30(9): 55–59.
[31] CONNELL L, DAVID D, MENG L, et al. An investigation into the integrity of wellbore cement in CO2 storage wells: Core flooding experiments and simulations[J]. Int J Greenhouse Gas Control, 2015, 37: 24–420.
[32] KUTCHKO B G, STRAZISAR B R, LOWRY D A, et al. Degradation of well cement by CO2 under geologic sequestration conditions[J]. Environ Sci Technol, 2007, 41: 4787–4792.
[33] JAMES C W, STEVEN J B, RICHARD M, et al. Fully coupled modeling of long term cement well seal stability in the presence of CO2[J]. Energy Procedia, 2011(4): 5162–5169.
[34] LAURE D, MATTEO L, BRUNO H, et al. Stability of a leakage pathway in a cemented annulus[J]. Energy Procedia, 2011(4): 5283–5290.
[35] MASON H E, FRANE D, WALSH W L, et al. Chemical and mechanical properties of wellbore cement altered by CO2-rich brine using a multianalytical approach[J]. Environ Sci Technol, 2013, 47 (3): 1745–1752.
[36] ZHANG L W, DAVID A D, DAVID V N, et al. Rate of H2S and CO2 attack on pozzolan-amended class H well cement under geologic sequestration conditions[J]. Int J Greenhouse Gas Control, 2012, 27: 299–308.
[37] KUTCHKO B G, STRAZISAR B R, LOWRY G V, et al. Rate of CO2 attack on hydrated class H well cement under geologic sequestration conditions[J]. Environ Sci Technol, 2008, 42: 6237–6242.
[38] BARLET G V, RIMMELE G, GOFFE B, et al. Mitigation strategies for the risk of CO2 migration through wellbores[C]// IADC/SPE Drilling Conference, Florida, USA, 2006: 1–17.
[39] HOUST YF, WITTMANN F H. Depth profiles of carbonates formed during natural carbonation[J]. Cem Concr Res, 2002, 32: 1923–1930.
[40] GUIGLIA M, TALIANO M. Comparison of carbonation depths measured on in field exposed existing strctures with predictions made using fib-model code[J]. Cem Concr Res, 2013, 38: 92–108.
[41] SIRIWARDENA D P, PEETHAMPARAN S. Quantification of CO2 sequestration capacity and carbonation rate of alkaline industrial byproducts[J]. Construc Build Mater, 2015, 91: 216–224.
[42] ZHANG L, DZOMBAK D A, NAKLES D V, et al. Characterization of Pozzolan-amended wellbore cement exposed to CO2 and H2S gas mixtures under geologic carbon storage conditions[J]. Int J Greenhouse Gas Control, 2013, 19: 358–368.
[43] FABBRI A, JACQUEMET N, SEYEDI D. A chemo-mechanical model of oil well cement carbonation under CO2 geological storage conditions[J]. Cem Concr Res, 2012, 42 (1): 8–19.
[44] LI Q Y, YUN M L, KATHARINE M F, et al. Chemical reactions of portland cement with aqueous CO2 and their impacts on cement’s mechanical properties under geologic CO2 sequestration conditions[J]. Environ Sci Technol, 2015, 49: 6335–6343.
[45] MUSTAFA H O, MILEVA R. An experimental study of the effect of CO2 rich brine on artificially fractured well-cement[J]. Cem Concr Compos, 2014, 45: 201–208.
[46] JOSE C, KOOROSH A. Experimental study of stability and integrity of cement in wellbore used for CO2 storage[J]. Energy Procedia, 2009, (1): 3633–3640.
[47] STUART D C W, WYATT L D F, MASON H E, et al. Permeability of Wellbore-cement fractures following degradation by carbonated brine[J]. Rock Mech Rock Eng, 2013, 46: 455–464.
[48] 冯福平, 艾池, 杨丰宇, 等. 偏心环空层流顶替滞留层边界位置研究[J]. 石油学报, 2010, 31(5): 859–862.
FENG Fuping, AI Chi, YANG Fengyu, et al. Acta Petrol Sin (in Chinese), 2010, 31(5): 859–862.
[49] 郭辛阳, 步玉环, 沈忠厚, 等. 井下复杂温度条件对固井界面胶结强度的影响[J]. 石油学报, 2010, 31(5): 834–837.
GUO Xinyang, BU Yuhuan, SHEN Zhonghou, et al. Act Petrol Sin (in Chinese), 2010, 31(5): 834–837.
[50] 顾军, 李新宏, 先花, 等. 油井水泥浆与多功能钻井液泥饼界面离子扩散阻碍机理[J]. 石油学报, 2013, 34(2): 359-364.
GU Jun, LI Xinhong, XIAN Hua, et al. Act Petrol Sin (in Chinese), 2013, 34(2): 359–364.
[51] JENA J, PAUL S, HAMIDREZA R, et al. Modeling of the induced chemo-mechanical stress through porous cement mortar subjected to CO2: Enhanced micro-dilatation theory and 14C-PMMA method[J]. Comput Mater Sci, 2013, 69: 466–480.
[52] TIMOTHEUS K T W, SUZANNE J T H, CHRISTOPHER J S. Effect of CO2-induced reactions on the mechanical behaviour of fractured wellbore cement[J]. Geomech Energy Environ, 2016, 7: 26–46.
[53] CLAUS K, LYKOURGOS S, PETER F, et al. Cement self-healing as a result of CO2 leakage[J]. Energy Procedia, 2016, 86: 342–351.
[54] CAREYA J W, MARCUS W, STEVE J C, et al. Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit[J]. Int J Greenhouse Gas Control, 2007: 75–85.
[55] MASON H E , FRANE D, WALSH W L, et al. Chemical and mechanical properties of wellbore cement altered by CO2-rich brine using a multianalytical approach[J]. Environ Sci Technol, 2013, 47: 1745–1752.
[56] NEWELL D L, CAREY J W. Experimental evaluation of wellbore integrity along the cement- rock boundary[J]. Environ Sci Technol, 2013, 47: 276–282.
[57] WALSH S D C, MASON H E, FRANE D, et al. Experimental calibration of a numerical model describing the alteration of cement/caprock interfaces by carbonated brine[J]. Int J Greenhouse Gas Control, 2014, 22: 176–188.
[58] CAO P, KARPYN Z T, LI L. Dynamic alterations in wellbore cement integrity due to geochemical reactions in CO2-rich environments[J]. Water Resour Res, 2013, 49: 4465–4475.
[59] CAO P, KARPYN Z T, LI L.The role of host rock properties in determining potential CO2 migration pathways[J]. Int J Greenhouse Gas Control, 2016, 45: 18–26.
[60] LUQUOT L, ABDOULGHAFOUR H, GOUZE P. Hydro-dynamically controlled alteration of fractured Portland cements flowed by CO2-rich brine[J]. Int J Greenhouse Gas Control, 2013, 16: 167–179.
[61] HUERTA N J, HESSE M A, BRYANT S L, et al. Experimental evidence for self-limiting reactive flow through a fractured cement core: implications for time- dependent wellbore leakage[J]. Environ Sci Techno, 2013, 47: 269–275.
[62] BACHU S, BENNION D B. Experimental assessment of brine and/or CO2 leakage through well cements at reservoir conditions[J]. Int J Greenhouse Gas Control, 2009: 494–501.
[63] ABDOULGHAFOUR H, GOUZEA P, LUQUOT L, et al. Characterization and modeling of the alteration of fractured class-G Portland cement during flow of CO2-rich brine[J]. Int J Greenhouse Gas Control, 2016, 48: 155–170.
[64] HUERTA N J, HESSE M A, BRYANT S L, et al. Reactive transport of CO2-saturated water in a cement fracture: application to wellbore leakage during geologic CO2 storage[J]. Int J Greenhouse Gas Control, 2016, 44: 276–289.
[65] FABBRI A, JACQUEMET N, SEYEDI D M. A chemo-poromechanical model of oilwell cement carbonation under CO2 geological storage conditions[J]. Cem Concr Res, 2012, 42: 8–19.
[66] BRUNET J P L, LI L, ZULEIMA T K, et al. Dynamic evolution of cement composition and transport properties under conditions relevant to geological carbon sequestration[J]. Energy Fuels, 2013, 27: 4208–4220.
[67] GABRIELA D, JORDI C, SALVADOR G, et al. Efficiency of magnesium hydroxide as engineering seal in the geological sequestration of CO2[J]. Int J Greenhouse Gas Control, 2016, 48: 171–185.
[68] ZHANG L W, DAVID A D, DAVID V N, et al. Reactive transport modeling of interactions between acid gas (CO2+H2S) and Pozzolan-amended wellbore cement under geologic carbon sequestration conditions[J]. Energy Fuels, 2013, 27: 6921–6937.
[69] BRUNET J P L, LI L, ZULEIMA T K, et al. Fracture opening or self -sealing:Critical residence time as a unifying parameter for cement-CO2-brine interactions[J]. Int J Greenhouse Gas Control, 2016, 47: 25–37.
[70] TIMOTHEUS K T W, COLIN J P, AMIR R, et al. Reactive transport of CO2-rich fluids in simulated wellbore interfaces:Flow-through experiments on the 1-6 m length scale[J]. Int J Greenhouse Gas Control, 2016, 54: 96–116.
[71] AMIR R, NICK H M, WOLTERBEEK K T, et al. Pore-scale modeling of reactive transport in wellbore cement under CO2 storage conditions[J]. Int J Greenhouse Gas Control, 2012, 11: S67–S77.
|