首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
低钙硅酸盐矿物碳化硬化性能研究进展
作者:管学茂 刘松辉 张海波 豆珍珍   冯春花 
单位:河南理工大学材料科学与工程学院 河南 焦作 454003 
关键词:硅酸盐 低钙 碳化 硬化 
分类号:TU526
出版年,卷(期):页码:2018,46(2):263-267
DOI:
摘要:

低钙硅酸盐矿物在一定湿度下能够与二氧化碳发生反应,反应产物能够迅速凝结、硬化形成致密的硬化体。为了更好地研究和利用低钙硅酸盐矿物的碳化硬化性能,综述了低钙硅酸盐矿物的碳化反应过程、碳化硬化机理等方面的研究进展。低钙硅酸盐矿物碳化形成的碳酸钙晶体和高度聚合的非晶态二氧化硅凝胶是硬化体强度增长的主要来源,并且低钙硅酸盐矿物组成、结构及其与胶凝性能的关系,碳化反应及硬化机理,碳化硬化体的结构和耐久性等方面需要进一步系统研究。

Moist low calcium silicates minerals can readily react with carbon oxide (CO2). The reaction productscause a rapid hardening and result in the production of dense microstructure. To investigate and utilize the carbonation and hardening properties of low calcium silicates minerals preferably, the relevant results on the carbonation process and hardening mechanism of the low calcium silicates minerals were summarized. The crystalline calcium carbonate and highly polymerized amorphous silica gels formed during the carbonation process of low calcium silicates minerals are responsible for the strength development of hardened pastes. Some aspects on the relationships among the mineral composition, microstructure and cementitious performance, the carbonation reaction and hardening mechanism, the structure and durability of hardened pastes need to be further investigated.

基金项目:
NSFC-河南省联合基金(U1604118);国家自然科学基金(51502080)项目。
作者简介:
管学茂(1965—),男,教授,博士研究生导师。
参考文献:
[1] ASHRAF W, OLEK J. Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials[J]. J Mater Sci, 2016, 51(13): 6173–6191.
[2] 侯贵华, 卢豹, 郜效娇, 等. 新型低钙水泥的制备及其碳化硬化过程[J]. 硅酸盐学报, 2016, 44(02): 286–291.
HOU Guihua, LU Bao, GAO Xiaojiao, et al. J Chin Ceram Soc, 2016, 44(02): 286–291.
[3] FARNAM Y, VILLANI C, WASHINGTON T, et al. Performance of carbonated calcium silicate based cement pastes and mortars exposed to NaCl and MgCl2 deicing salt[J]. Constr Build Mater, 2016, 111: 63–71.
[4] SCHNEIDER M, ROMER M, TSCHUDIN M, et al. Sustainable cement production-present and future[J]. Cem Concr Res, 2011, 41(7): 642–650.
[5] MEYER C. The greening of the concrete industry[J]. Cem Concr Compos, 2009, 31(8): 601–605.
[6] WBCSD I. Cement Technology Roadmap 2009 - Carbon Emissions Reductions up to 2050[R]. Environ Manag, 2009.
[7] IMBABI M S, CARRIGAN C, MCKENNA S. Trends and developments in green cement and concrete technology[J]. Int J Sustain Build Environ, 2012, 1(2): 194–216.
[8] CASTELLOTE M, FERNANDEZ L, ANDRADE C, et al. Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations[J]. Mater Struct, 2009, 42(4): 515–525.
[9] DAMTOFT J S, LUKASIK J, HERFORT D, et al. Sustainable development and climate change initiatives[J]. Cem Concr Res, 2008, 38(2): 115–127.
[10] ORTIZ O, CASTELLS F, SONNEMANN G. Sustainability in the construction industry: A review of recent developments based on LCA[J]. Construct Build Mater, 2009, 23(1): 28–39.
[11] JUENGER M C G, WINNEFELD F, PROVIS J L, et al. Advances in alternative cementitious binders[J]. Cem Concr Res, 2011, 41(12): 1232–1243.
[12] SHI C, JIMÉNEZ A F, PALOMO A. New cements for the 21st century: The pursuit of an alternative to Portland cement[J]. Cem Concr Res, 2011, 41(7): 750–763.
[13] BENHELAL E, ZAHEDI G, HASHIM H. A novel design for green and economical cement manufacturing[J]. J Cleaner Product, 2012, 22(1): 60–66.
[14] SOROUSHIAN P, WON J, HASSAN M. Durability and microstructure analysis of CO2 cured cement-bonded wood particleboard[J]. Cem Concr Compos, 2013, 41: 34–44.
[15] ASHRAF W. Carbonation of cement-based materials: Challenges and opportunities[J]. Construct Build Mater, 2016, 120: 558–570.
[16] 莫立武, PANESAR D K. 高浓度二氧化碳碳化活性氧化镁水泥浆体的显微结构(英文)[J]. 硅酸盐学报, 2014, 42(2): 142–149.
MO L, PANESAR D K. J Chin Ceram Soc, 2014, 42(2): 142–149.
[17] BUKOWSKI J M, BERGER R L. Reactivity and strength development of CO2, activated non-hydraulic calcium silicates[J]. Cem Concr Res, 1979, 9(1): 57–68.
[18] 史才军, 何平平, 涂贞军, 等. 预养护对二氧化碳养护混凝土过程及显微结构的影响[J]. 硅酸盐学报, 2014, 42(8): 996–1004. 
SHI C, HE P, TU Z, et al. J Chin Ceram Soc, 2014, 42(8): 996–1004.
[19] HIGUCHI T, MORIOKA M, YOSHIOKA I, et al. Development of a new ecological concrete with CO2 emissions below zero[J]. Construct Build Mater, 2014, 67: 338–343.
[20] MO L, PANESAR D K. Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO[J]. Cem Concr Res, 2012, 42(6): 769–777.
[21] JANG J G, LEE H K. Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement[J]. Cem Concr Res, 2016, 82: 50–57.
[22] LANGE L C. Carbonation of cement: solidified hazardous waste[D]. Queen Mary University of London, 1997.
[23] DE SILVA P, BUCEA L, MOOREHEAD D R, et al. Carbonate binders: Reaction kinetics, strength and microstructure[J]. Cem Concr Compos, 2006, 28(7): 613–620.
[24] FERNANDEZBERTOS M, SIMONS S, HILLS C, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2[J]. J Hazard Mater, 2004, 112(3): 193–205.
[25] SHTEPENKO O, HILLS C, BROUGH A, et al. The effect of carbon dioxide on β-dicalcium silicate and Portland cement[J]. Chem Eng J, 2006, 118(1/2): 107–118.
[26] HIGUCHI T, MORIOKA M, YOSHIOKA I, et al. Development of a new ecological concrete with CO2 emissions below zero[J]. Construct Build Mater, 2014, 67: 338–343.
[27] GUAN X, LIU S, FENG C, et al. The hardening behavior of γ-C2S binder using accelerated carbonation[J]. Construct Build Mater, 2016, 114: 204–207.
[28] FANG Y, CHANG J. Microstructure changes of waste hydrated cement paste induced by accelerated carbonation[J]. Construct Build Mater, 2015, 76: 360–365.
[29] 刘松辉, 管学茂, 邱满, 等. 通过加速碳化激发γ-C2S矿物的活性[J]. 硅酸盐学报, 2016, 44(05): 1–5.
LIU Songhui, GUAN Xuemao, QIU Man, et al. J Chin Ceram Soc, 2016, 44(05): 1–5.
[30] QIAN B, LI X, SHEN X. Preparation and accelerated carbonation of low temperature sintered clinker with low Ca/Si ratio[J]. J Cleaner Prod, 2016, 120: 249–259.
[31] SEVELSTED T F, SKIBSTED J. Carbonation of C–S–H and C–A–S–H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy[J]. Cem Concr Res, 2015, 71: 56–65.
[32] 管学茂, 邱满, 刘松辉, 等. 自粉化低碳水泥的制备及其碳化硬化性能[J]. 硅酸盐学报, 2016, 44(11): 1558–1562.
GUAN Xuemao, QIU Man, LIU Songhui, et al. J Chin Ceram Soc, 2016, 44(11): 1–5.
[33] SHTEPENKO O, HILLS C, BROUGH A, et al. The effect of carbon dioxide on β-dicalcium silicate and Portland cement[J]. Chem En J, 2006, 118(1/2): 107–118.
[34] ASHRAF W, OLEK J, TIAN N. Multiscale characterization of carbonated wollastonite paste and application of homogenization schemes to predict its effective elastic modulus[J]. Cem Concr Compos, 2016, 72: 284–298.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com