[1] WANG Y, ROLLER J, MARIC R. Direct dry synthesis of thin nanostructured LiNi0.8Co0.2O2 film for lithium ion micro-battery cathodes [J]. Electrochim Acta, 2017, 241(1): 510–516.
[2] DING Y, WANG R, CHENG K, et al. A short review on layered LiNi0.8Co0.1Mn0.1O2 positive electrode material for lithium-ion batteries[J]. Energy Procedia, 2017, 105: 2941–2952.
[3] PAN C, ZHU Y, YANG Y, et al. Influences of transition metal on structural and electrochemical properties of Li[NixCoyMnz]O2 (0.6≤x≤0.8) cathode materials for lithium-ion batteries[J]. Trans. Nonferrous Met Soc China, 2016, 26: 1396–1402.
[4] XIANG Y, LI J, WU X, LIU Z, et al. Synthesis and electrochemical characterization of Mg-doped Li-rich Mn-based cathode material[J]. Ceram Int, 2016, 42: 8833–8838.
[5] ABRAHAM D P, KAWAUCHI S, DEES D W. Modeling the impedance versus voltage characteristics of LiNi0.8Co0.15Al0.05O2[J]. Electrochim Acta, 2008, 53(5): 2121–2129.
[6] LIU Z, ZHEN H, KIM Y, et al. Synthesis of LiNiO2 cathode materials with homogeneous Al doping at the atomic level[J]. J Power Sources 2011, 196: 10201–10206
[7] HUANG B, LI X, WANG Z, et al. Synthesis of Mg-dopedLiNi0.8 Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries[J]. Ceram Int, 2014, 40: 13223–13230.
[8] FERGUS J. Recent developments in cathode materials for lithium ion batteries[J]. J Power Sources, 2010, 195(1): 939–954.
[9] ZUO D, TIAN G, LI X, et al. Recent progress in surface coating of cathode materials for lithium ion secondary batteries[J]. J Alloy Compd, 2017, 706: 24–40.
[10] 周玉, 武高辉. 材料分析测试技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2007: 38–39.
[11] LIU H, LI J, ZHANG Z, et al. Structural, electrochemical and thermal properties of LiNi0.8–yTiyCo0.2O2 as cathode materials for lithium ion battery[J]. Electrochim Acta, 2004, 49: 1151–1159.
[12] SHU J, MA R, SHAO L, et al. In-situ X-ray diffraction study on the structural evolutions of LiNi0.5Co0.3Mn0.2O2 in different working potential windows[J]. J Power Sources, 2014, 245: 7–18.
[13] POUILLERIE C, CROGUENNEC L, DELMAS C. The LixNi1−yMgyO2 (y=0.05, 0.10) system: structural modifications observed upon cycling[J]. Solid State Ionics, 2000, 132(1/2): 15–29.
[14] REN H, XIANG L, PENG Z. Electrochemical properties of Li[Ni1/3Mn1/3Al1/3−xCox]O2 as a cathode material for lithium ion battery[J]. Electrochim Acta, 2011, 56(20): 7088–7091.
[15] LIN C, REN Y, AMINE K, et al. In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery[J]. J Power Sources, 2013, 230: 32–37.
[16] BALASUBRAMANIAN M, SUN X, YANG X. In situ X-Ray absorption studies of a high-rate LiNi0.85Co0.15O2 cathode material[J]. J Electrochem Soc, 2000, 147(8): 2903–2909.
[17] GUO Q, CHANG C, ZHANG D, et al. Electrochemical performance of Cox/Li3TiCo1−xCrO12 as anode materials for lithium ion batteries[J]. J Alloy Compd, 2017, 692: 257–264.
[18] BAK S, NAM K, CHANG W. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chem Mater, 2013, 25(3): 337–351.
[19] MUKHOPADHYAY A, SHELDON B. Deformation and stress in electrode materials for Li-ion batteries[J]. Prog Mater Sci, 2014, 63: 58–116.
|