首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
掺Al对LiNi0.85Co0.15O2结构、电化学性能和热稳定性的影响
作者:范广新 刘泽萍   刘宝忠 
单位:河南理工大学材料科学与工程学院 河南 焦作 454000 
关键词:正极材料 掺铝 微观结构 电化学性能 热稳定性 
分类号:TQ152
出版年,卷(期):页码:2018,46(2):268-274
DOI:
摘要:
采用高温固相法对正极材料LiNi0.85Co0.15O2进行Al掺杂,研究了Al及其含量对材料结构、电化学性能和热稳定性的影响。结果表明:Al可进入LiNi0.85Co0.15O2晶格,占据Ni原子位置。随着掺Al量增加:材料的晶胞参数a降低、c增大、阳离子混排程度先增加后减小,晶体密度减小;电极极化逐渐增强,放电比容量依次降低,循环性能明显改善,热稳定性提高。Al掺量为5%时,LiNi0.85–xCo0.15AlxO2综合性能达到最优。掺Al不能抑制LiNi0.85–xCo0.15AlxO2在电化学循环中由H1到H2相转变,但有利于稳定材料的H2相结构,从而提高材料的综合性能。
 
A positive electrode material of LiNi0.85Co0.15O2 for lithium ion battery was doped with Al by a high-temperature solid state method. The effect of Al content on the structure, electrochemical properties and thermal stability of the material was investigated. The results show that Al atoms can be dissolved in LiNi0.85Co0.15O2 lattice occupying the positions of Ni atoms. The cell parameters of materials a decreases while c increases, cation mixing degree firstly increases and then decreases, the crystal density decreases gradually, the electrode polarization becomes serious, the specific discharge capacity decreases, cycle performance and thermal stability improve when Al content increases. The optimum comprehensive performance of LiNi0.85–xCo0.15AlxO2 can be obtained at Al amount of 5%. The addition of Al can not inhibit the transition of LiNi0.85–xCo0.15AlxO2 from H1 to H2 phase during electrochemical cycling, while favors to stabilize H2 phase structure of the material and improve the comprehensive properties.
 
基金项目:
国家自然科学基金项目(51671080, 51471065, U1304522);河南省高校科技创新团队(16IRTSTHN005)。
作者简介:
范广新(1970—),男,博士,副教授。
参考文献:
[1] WANG Y, ROLLER J, MARIC R. Direct dry synthesis of thin nanostructured LiNi0.8Co0.2O2 film for lithium ion micro-battery cathodes [J]. Electrochim Acta, 2017, 241(1): 510–516.
[2] DING Y, WANG R, CHENG K, et al. A short review on layered LiNi0.8Co0.1Mn0.1O2 positive electrode material for lithium-ion batteries[J]. Energy Procedia, 2017, 105: 2941–2952.
[3] PAN C, ZHU Y, YANG Y, et al. Influences of transition metal on structural and electrochemical properties of Li[NixCoyMnz]O2 (0.6≤x≤0.8) cathode materials for lithium-ion batteries[J]. Trans. Nonferrous Met Soc China, 2016, 26: 1396–1402.
[4] XIANG Y, LI J, WU X, LIU Z, et al. Synthesis and electrochemical characterization of Mg-doped Li-rich Mn-based cathode material[J]. Ceram Int, 2016, 42: 8833–8838.
[5] ABRAHAM D P, KAWAUCHI S, DEES D W. Modeling the impedance versus voltage characteristics of LiNi0.8Co0.15Al0.05O2[J]. Electrochim Acta, 2008, 53(5): 2121–2129.
[6] LIU Z, ZHEN H, KIM Y, et al. Synthesis of LiNiO2 cathode materials with homogeneous Al doping at the atomic level[J]. J Power Sources 2011, 196: 10201–10206
[7] HUANG B, LI X, WANG Z, et al. Synthesis of Mg-dopedLiNi0.8 Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries[J]. Ceram Int, 2014, 40: 13223–13230.
[8] FERGUS J. Recent developments in cathode materials for lithium ion batteries[J]. J Power Sources, 2010, 195(1): 939–954.
[9] ZUO D, TIAN G, LI X, et al. Recent progress in surface coating of cathode materials for lithium ion secondary batteries[J]. J Alloy Compd, 2017, 706: 24–40.
[10] 周玉, 武高辉. 材料分析测试技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2007: 38–39.
[11] LIU H, LI J, ZHANG Z, et al. Structural, electrochemical and thermal properties of LiNi0.8–yTiyCo0.2O2 as cathode materials for lithium ion battery[J]. Electrochim Acta, 2004, 49: 1151–1159.
[12] SHU J, MA R, SHAO L, et al. In-situ X-ray diffraction study on the structural evolutions of LiNi0.5Co0.3Mn0.2O2 in different working potential windows[J]. J Power Sources, 2014, 245: 7–18.
[13] POUILLERIE C, CROGUENNEC L, DELMAS C. The LixNi1−yMgyO2 (y=0.05, 0.10) system: structural modifications observed upon cycling[J]. Solid State Ionics, 2000, 132(1/2): 15–29.
[14] REN H, XIANG L, PENG Z. Electrochemical properties of Li[Ni1/3Mn1/3Al1/3−xCox]O2 as a cathode material for lithium ion battery[J]. Electrochim Acta, 2011, 56(20): 7088–7091.
[15] LIN C, REN Y, AMINE K, et al. In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery[J]. J Power Sources, 2013, 230: 32–37.
[16] BALASUBRAMANIAN M, SUN X, YANG X. In situ X-Ray absorption studies of a high-rate LiNi0.85Co0.15O2 cathode material[J]. J Electrochem Soc, 2000, 147(8): 2903–2909.
[17] GUO Q, CHANG C, ZHANG D, et al. Electrochemical performance of Cox/Li3TiCo1−xCrO12 as anode materials for lithium ion batteries[J]. J Alloy Compd, 2017, 692: 257–264.
[18] BAK S, NAM K, CHANG W. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chem Mater, 2013, 25(3): 337–351.
[19] MUKHOPADHYAY A, SHELDON B. Deformation and stress in electrode materials for Li-ion batteries[J]. Prog Mater Sci, 2014, 63: 58–116.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com