首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
热电能源材料研究进展
作者:张宗委1 王心宇1 刘一杰2  峰2 赵立东3  倩1 
单位:1. 哈尔滨工业大学材料科学与工程学院 广东 深圳 518055 2. 哈尔滨工业大学理学院 广东 深圳 518055  3. 北京航空航天大学材料科学与工程学院 北京 100191 
关键词:热电材料 热电优值 能带工程 纳米工程 缺陷工程 
分类号:TG132.2+4, TQ174.6, TN304.2
出版年,卷(期):页码:2018,46(2):288-305
DOI:
摘要:

热电材料是一种可将热能和电能相互转换的功能材料,在温差发电和通电制冷方面有着非常广阔的应用前景,而且可以有效缓解能源紧缺和环境污染两大问题,近年来受到广泛关注。本文主要介绍了一些典型热电材料的最新研究进展,并围绕能带工程、纳米工程和缺陷工程等提高热电性能的方法对每个热电材料体系进行了简要总结,最后对热电材料的研究进行了展望。

Thermoelectric technology can directly and efficiently convert heat to electrical energy and vice versa as an alternative for power generation and refrigeration. Thermoelectric materials can effectively alleviate the problems of energy shortage and environmental pollution, and have attracted recent attention. This paper firstly introduced the development on some thermoelectric materials and emphasized on the band engineering, nanostructuring, defects engineering, etc. In addition, some possible research aspects to enhance the thermoelectric performance were briefly discussed.

基金项目:
国家自然科学基金面上项目(11674078,51571007);深圳市科技计划项目(JCYJ20160427184825558);北京市科学技术委员会(Z171100002017002)资助项目。
作者简介:
张宗委(1993—),男,硕士研究生。
参考文献:
[1] M R D. Shifting the Maximum Figure-of-Merit of (Bi, Sb)2(Te, Se)3 Thermoelectrics to Lower Temperatures[M]. Handbook of Thermoelectrics, the United States CRC Press, 2006: 1–15.
[2] ZHAO L D, HE J, BERARDAN D, et al. BiCuSeO oxyselenides: new promising thermoelectric materials[J]. Energy Environ Sci, 2014, 7(9): 2900–2924.
[3] POUDEL B, HAO Q, M A Y, et al. High Thermoelectric Performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634–638.
[4] XIE W, TANG X, YAN Y, et al. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys[J]. Appl Phys Lett, 2009, 94(10): 102111.
[5] KIM S I, LEE K H, M A H, et al. Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics[J]. Science, 2015, 348(6230): 109–144.
[6] ZHAO H, SUI J, TANG Z, et al. High thermoelectric performance of MgAgSb-based materials[J]. Nano Energy, 2014, 7: 97–103.
[7] LI D, ZHAO H, LI S, et al. Atomic Disorders Induced by Silver and Magnesium Ion Migrations Favor High Thermoelectric Performance in α-MgAgSb-Based Materials[J]. Adv Funct Mater, 2015, 25(41): 6478–6488.
[8] LIU Z, WANG Y, MAO J, et al. Lithium Doping to Enhance Thermoelectric Performance of MgAgSb with Weak Electron-Phonon Coupling[J]. Adv Energy Mater, 2016, 6(7): 1502269.
[9] YING P, LIU X, FU C, et al. High Performance α-MgAgSb thermoelectric materials for low temperature power generation[J]. Chem Mater, 2015, 27(3): 909–913.
[10] LIU H, SHI X, XU F, et al. Copper ion liquid-like thermoelectrics[J]. Nat Mater, 2012, 11(5): 422–425.
[11] YU B, LIU W, CHEN S, et al. Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer[J]. Nano Energy, 2012, 1(3): 472–478.
[12] HE Y, DAY T, ZHANG T, et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide[J]. Adv Mater, 2014, 26(23): 3974–3978.
[13] ZHONG B, ZHANG Y, LI W, et al. High superionic conduction arising from aligned large lamellae and large figure of merit in bulk Cu1.94Al0.02Se[J]. Appl Phys Lett, 2014, 105(12): 123902.
[14] ZHU T, FU C, XIE H, et al. High efficiency Half-heusler thermoelectric materials for energy harvesting[J]. Adv Energy Mater, 2015, 5(19): 1500588.
[15] FU C, ZHU T, LIU Y, et al. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1[J]. Energy Environ Sci, 2015, 8(1): 216–220.
[16] FU C, BAI S, LIU Y, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials[J]. Nat Commun, 2015, 6: 8144–8150.
[17] SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. J Am Chem Soc, 2011, 133(20): 7837–7846.
[18] ZHAO W, LIU Z, WEI P, et al. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials[J]. Nat Nanotechnol, 2017, 12(1): 55–60.
[19] LIU W, TAN X, YIN K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions[J]. Phys Rev Lett, 2012, 108(16): 166601.
[20] HSU K F, LOO S, Fu G, et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit[J]. Cheminform, 2004, 35(17): 818–821.
[21] ZHOU M, LI J F, KITA T. Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance[J]. J Am Chem Soc, 2008, 130(13): 4527–4532.
[22] HEREMANS J P, JOVOVIC V, TOBERER E S. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 2008, 321(5888): 554–560.
[23] PEI Y, SHI X, LALONDE A. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nat Energy, 2011, 473(7345): 66–69.
[24] BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nat Energy, 2012, 489(7416): 414–418.
[25] TAN G, SHI F, HAO S, et al. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe[J]. Nat Commun, 2016, (7): 12167. doi: 10.1038/ncomms12167.
[26] ZHAO L D, TAN G, S H. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J]. Science, 2016, 1351(6269): 141–144.
[27] ZHAO L D, LO S H, ZHANG Y. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496): 373–377.
[28] ZHAO L D, CHANG C, TAN G, et al. SnSe: a remarkable new thermoelectric material[J]. Energy Environ Sci, 2016, 9(10): 3044–3060.
[29] PENG K L, LU X, ZHAN H, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals[J]. Energy Environ Sci, 2016, 9(2): 454–460.
[30] ZHAO L D, BERARDAN D, PEI Y L, et al. Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials[J]. Appl Phys Lett, 2010, 97(9): 092118.
[31] LAN J L, LIU Y C, ZHAN B, et al. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics[J]. Adv Mater, 2013, 25(36): 5086–5090.
[32] LI Z, XIAO C, FAN S, et al. Dual Vacancies: An effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO[J]. J Am Chem Soc, 2015, 137(20): 6587–6593.
[33] ZHAO X B, JI X H, ZHANG Y H, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites[J]. Appl Phy Lett, 2005, 86(6): 1655–1658.
[34] BED POUDEL, QING HAO, REN Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634–638.
[35] ZHANG Q, ZHANG Q Y, REN Z. Suppression of grain growth by additive in nanostructured p-type bismuth antimony tellurides[J]. Nano Energy, 2012, 1(1): 183–189.
[36] KIM S I, LEE K H, H A M, et al. Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics.[J]. Science, 2015, 348(6230): 109–141.
[37] HU L P, ZHU T J, LIU X H, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials[J]. Adv Funct Mater, 2014, 24(33): 5211–5218.
[38] LIU W S, ZHANG Q Y, REN Z F. Thermoelectric property studies on Cu-Doped n-type CuxBi2Te2.7Se0.3 nanocomposites[J]. Adv Energy Mater, 2011, 1(4): 577–587.
[39] KIRKHAM M J, DOS SANTOS A M, J R C. Abinitio determination of crystal structures of the thermoelectric material MgAgSb[J]. Phys Rev B, 2012, 85(14): P4506.
[40] SUI J, SHUAI J, LAN Y, et al. Effect of Cu concentration on thermoelectric properties of nanostructured p-type MgAg0.97−xCuxSb0.99[J]. Acta Mater, 2015, 87: 266–272.
[41] LIU Z, SHUAI J, MAO J, et al. Effects of antimony content in MgAg0.97Sbx on output power and energy conversion efficiency[J]. Act Mater, 2016, 102: 17–23.
[42] LIU Z, GENG H, MAO J, et al. Understanding and manipulating the intrinsic point defect in α-MgAgSb for higher thermoelectric performance[J]. J Mater Chem A, 2016, 4(43): 16834–16840.
[43] LIU Z, WANG Y, GAO W, et al. The influence of doping sites on achieving higher thermoelectric performance for nanostructured α-MgAgSb[J]. Nano Energy, 2017, 31: 194–200.
[44] LIU Z, ZHANG Y, MAO J, et al. The microscopic origin of low thermal conductivity for enhanced thermoelectric performance of Yb doped MgAgSb[J]. Act Mater, 2017, 128: 227–234.
[45] TAN X, WANG L, SHAO H, et al. Improving Thermoelectric Performance of α-MgAgSb by Theoretical Band Engineering Design[J]. Adv Energy Mater, 2017: 1700076.
[46] KRAEMER D, SUI J, MCENANEY K, et al. High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts[J]. Energy Environ Sci, 2015, 8(4): 1299–1308.
[47] HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 2008, 321(5888): 554–557.
[48] ZHANG Q, WANG H, ZHANG Q, et al. Effect of silicon and sodium on thermoelectric properties of thallium-doped lead telluride-based materials[J]. Nano Lett, 2012, 12(5): 2324–2330.
[49] ZHANG Q, WANG H, LIU W, et al. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide[J]. Energy Environ Sci, 2012, 5(1): 5246–5251.
[50] PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66–69.
[51] ZHANG Q, CAO F, LIU W, et al. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe(1–y)Se(y)[J]. J Am Chem Soc, 2012, 134(24): 10031–10038.
[52] LEE Y, LO S H, CHEN C, et al. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide[J]. Nat Commun, 2014, 5: 3640.
[53] BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416): 414–418.
[54] WU H J, ZHAO L D, ZHENG F S, et al. Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3[J]. Nat Commun, 2014, 5: 4515. doi: 10.1038/ncomms5515.
[55] WU D, ZHAO L D, TONG X, et al. Superior thermoelectric performance in PbTe–PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration[J]. Energy Environ Sci, 2015, 8(7): 2056–2068.
[56] ZHANG Q, CHERE E K, WANG Y, et al. High thermoelectric performance of n-type PbTe1−ySy due to deep lying states induced by indium doping and spinodal decomposition[J]. Nano Energy, 2016, 22: 572–582.
[57] ZHANG Q, CHERE E K, MCENANEY K, et al. Enhancement of Thermoelectric Performance of n-Type PbSe by Cr Doping with Optimized Carrier Concentration[J]. Adv Energy Mater, 2015, 5(8): 1401977.
[58] ZHANG Q, LIAO B, LAN Y, et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe[J]. Proc Natl Acad Sci USA, 2013, 110(33): 13261–13266.
[59] TAN G, SHI F, DOAK J W, et al. Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe[J]. Energy Environ Sci, 2015, 8(1): 267–277.
[60] TAN G, ZHAO L D, SHI F, et al. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach[J]. J Am Chem Soc, 2014, 136(19): 7006–7017.
[61] BANIK A, SHENOY U S, ANAND S, et al. Mg Alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties[J]. Chemf Mater, 2015, 27(2): 581–587.
[62] WU H, CHANG C, FENG D, et al. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe[J]. Energy Environ Sci, 2015, 8(11): 3298–3312.
[63] ZHOU M, GIBBS Z M, WANG H, et al. Optimization of thermoelectric efficiency in SnTe: the case for the light band[J]. Phys Chem Chem Phys, 2014, 16(38): 20741–20748.
[64] PEI Y, ZHENG L, LI W, et al. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe[J]. Adv Electron Mater, 2016, 2(6): 1600019.
[65] LI C W, HONG J, MAY A F, et al. Orbitally driven giant phonon anharmonicity in SnSe[J]. Nat Phys, 2015, 11(12): 1063–1069.
[66] SASSI S, CANDOLFI C, VANEY J B, et al. Assessment of the thermoelectric performance of polycrystalline p-type SnSe[J]. Appl Phys Lett, 2014, 104(21): 212105.
[67] ZHAO S, WANG H, ZHOU Y, et al. Controlled synthesis of single-crystal SnSe nanoplates[J]. Nano Res, 2015, 8(1): 288–295.
[68] DUONG A T, NGUYEN V Q, DUVJIR G, et al. Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals[J]. Nat Commun, 2016, 7: 13713.
[69] CHERE E K, ZHANG Q, DAHAL K, et al. Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe[J]. J Mater Chem A, 2016, 4(5): 1848–1854.
[70] WEI T R, WU C F, ZHANG X, et al. Thermoelectric transport properties of pristine and Na-doped SnSe(1–x)Te(x) polycrystals[J]. Phys Chem Chem Phys, 2015, 17(44): 30102–30109.
[71] CHEN C L, WANG H, CHEN Y Y, et al. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag[J]. J Mater Chem A, 2014, 2(29): 11171.
[72] TANG G, WEI W, ZHANG J, et al. Realizing high figure of merit in phase-separated polycrystalline Sn1–xPbxSe[J]. J Am Chem Soc, 2016, 138(41): 13647–13654.
[73] ZHANG Q, CHERE E K, SUN J, et al. Studies on thermoelectric properties of n-type polycrystalline SnSe1–xSx by iodine doping[J]. Adv Energy Mater, 2015, 5(12): 1500360.
[74] CHANG C, TAN Q, PEI Y, et al. Raising thermoelectric performance of n-type SnSe via Br doping and Pb alloying[J]. RSC Adv, 2016, 6(100): 98216–98220.
[75] WANG X, XU J, LIU G, et al. Optimization of thermoelectric properties in n-type SnSe doped with BiCl3[J]. Appl Phys Lett, 2016, 108(8): 083902.
[76] SALES B C, MANDRUS D, K W R. Filled Skutterudite antimonides A new class of thermoelectric materials[J]. Science, 1996, 272(5266): 1325–1329.
[77] SHI X, ZHANG W, CHEN L D, et al. Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites[J]. Phys Rev Lett, 2005, 95(18).doi:  10.1103/PhysRevLett.95.185503.
[78] TANG Y, CHEN S W, SNYDER G J. Temperature dependent solubility of Yb in Yb–CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics[J]. J Mater, 2015, 1(1): 75–84.
[79] ZHAO X Y, SHI X, CHEN L D, et al. Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12[J]. J Appl Phys, 2006, 99(5): 1325–1329.
[80] ZHANG L, GRYTSIV A, ROGL P, et al. High thermoelectric performance of triple-filledn-type skutterudites (Sr,Ba,Yb)yCo4Sb12[J]. J Phys D: Appl Phys, 2009, 42(22): 225405.
[81] SHIN D K, KIM I H. Preparation and thermoelectric properties of p-type PrzFe4−xCoxSb12 skutterudites[J]. J Korean Phys Soc, 2015, 65(12): 2071–2076.
[82] JIE Q, WANG H, LIU W, et al. Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing[J]. Phys Chem Chem Phys, 2013, 15(18): 6809–6816.
[83] CHEN Z, YANG J, LIU R. et al. Theoretical study on structural stability of fully filled p-type skutterudites RETM4Sb12 (RE = rare earth; TM = Fe, Ru)[J]. J Electron Mater, 2013, 42(8): 2492–2497.
[84] ROGL G, GRYTSIV A, HEINRICH P, et al. New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12−xXx (X=Ge, Sn) reaching ZT>1.3[J]. Acta Mater, 2015, 91: 227–238.
[85] LIANG T, SU X, YAN Y, et al. Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites[J]. J Mater Chem.A, 2014, 2(42): 17914–17918.
[86] VIDU R, PEREZ-PAGE M, QUACH D V, et al. Electrodeposition of Ni and Te-doped cobalt triantimonide in citrate solutions[J]. Electroanalysis, 2015, 27(12): 2845–2856.
[87] KATSUYAMA S, KANAYAMA Y, ITO M, et al. Thermoelectric properties of CoSb3 with dispersed FeSb2 particles[J]. J Appl Phys, 2000, 88(6): 3484–3489.
[88] KATSUYAMA S, WATANABE M, KUROKI M, et al. Effect of NiSb on the thermoelectric properties of skutterudite CoSb3[J]. J Appl Phy, 2003, 93(5): 2758–2764.
[89] XIONG Z, CHEN X, ZHAO X, et al. Effects of nano-TiO2 dispersion on the thermoelectric properties offilled-skutterudite Ba0.22Co4Sb12[J]. Solid State Sci, 2009, 11(9): 1612–1616.
[90] ZAITSEV V K, FEDOROV M I, GURIEVA E A, et al. Highly effective Mg2Si1–xSnx, thermoelectrics[J]. Phys Rev B, 2006, 74(4): 05207. doi: 10.1103/physRevB.74.045207.
[91] ISODA Y, NAGAI T, H F. Thermoelectric Properties of Sb-doped Mg2Si0.5Sn0.5[C]//ICT'06. 25th International Conference on. IEEE, 2006: 406–410.
[92] LIU W, TAN X, YIN K. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1–x)Sn(x) solid solutions[J]. Phys Rev Lett, 2012, 108(16): 166601.
[93] ZHANG Q, CHENG L, LIU W, et al. Low effective mass and carrier concentration optimization for high performance p-type Mg2(1–x)Li2xSi0.3Sn0.7 solid solutions[J]. Phys Chem Chem Phys, 2014, 16(43): 23576–23583.
[94] LIU W S, KIM H S, CHEN S, et al. n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation[J]. Proc Natl Acad Sci U S A, 2015, 112(11): 3269–3274.
[95] KATO A, YAGI T, FUKUSAKO N. First-principles studies of intrinsic point defects in magnesium silicide[J]. J Phys Condens Matter, 2009, 21(20): 205801.
[96] DU Z, ZHU T, CHEN Y, et al. Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions[J]. J Mater Chem, 2012, 22(14): 6838–6844.
[97] LIU W, TANG X, HAN L, et al. Optimized Thermoelectric Properties of Sb-Doped Mg2(1+ z)Si0.5–ySn0. 5Sby through Adjustment of the Mg Content[J]. Chemif Materi, 2011, 23(23): 5256–5263.
[98] ZHANG Q, HE J, ZHU T J, et al. High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials[J]. Appl Phys Lett, 2008, 93(10): 102109.
[99] ZHANG Q, HE J, ZHAO X B, et al. In situsynthesis and thermoelectric properties of La-doped Mg2(Si, Sn) composites[J]. J Phys D: Applied Phys, 2008, 41(18): 2824–2833.
[100] SASAGO Y I T, UCHINOKURA K. Large thermoelectric power in NaCo2O4 single crystals[J]. Phys Rev B, 1997, 56(20): R12685.
[101] LIU Y, ZHAO L D, LIU Y, et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies[J]. J Am Chem Soc, 2011, 133(50): 20112–20115.
[102] LI J, SUI J, PEI Y, et al. A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides[J]. Energy Environ Sci, 2012, 5(9): 8543–8547.
[103] SUI J, LI J, HE J, et al. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides[J]. Energy Environ Sci, 2013, 6(10): 2916–2920.
[104] LIU Y, ZHAO L D, ZHU Y, et al. Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a Dual-doping approach[J]. Adv Energy Mate, 2016, 6(9): 1502423.
[105] 黄向阳, 徐政, 陈立东. Half-Heusler热电半导体材料[J]. 无机材料学报, 2004, 19(1): 25–30.
[106] CHEN L D, HUANG X Y, M Z. The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions[J]. J Appl Phys, 2006, 99(6): 064305.
[107] XIE W J, HE J, ZHU S, et al. Simultaneously optimizing the independent thermoelectric properties in (Ti,Zr,Hf)(Co,Ni)Sb alloy by in situ forming InSb nanoinclusions[J]. Act Materi, 2010, 58(14): 4705–4713.
[108] MAKONGO J P, MISRA D K, ZHOU X, et al. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys[J]. J Am Chem Soc, 2011, 133(46): 18843–18852.
[109] CHEN S, REN Z. Recent progress of half-Heusler for moderate temperature thermoelectric applications[J]. Mater Today, 2013, 16(10): 387–395.
[110] XIE H, WANG H, PEI Y, et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-heusler thermoelectric materials[J]. Adv Functi Mater, 2013, 23(41): 5123–5130.
[111] MACHADO K D, LIMA J C D, A G T. Structural study of Cu2−xSe alloys produced by mechanical alloying[J]. Act Crystall, 2004, 60(Pt 3): 282–286.
[112] HORBACH J, KOBW K B. Structural and dynamical properties of sodium silicate melts an investigation by molecular dynamics computer simulation.[J]. Chemi Geol, 2001, 174(1): 87–101.
[113] SKOMOROKHOV A N, TROTS D M, KNAPP M, et al. Structural behaviour of β-Cu2−δSe (δ=0, 0.15, 0.25) in dependence on temperature studied by synchrotron powder diffraction[J]. J Alloy Compd, 2006, 421(1–2): 64–71.
[114] KOO J, KIM C W, JEONG C, et al. Rapid synthesis of CuInSe2 from sputter-deposited bilayer In2Se3/Cu2Se precursors[J]. Thin Solid Films, 2015, 582: 79–84.
[115] OHTANI T, TACHIBANA Y J O. Physical properties and phase transitions of β Cu2−xSe(0.20≤ x≤ 0.25).[J]. J Alloy Compd, 1998, 279(2): 136–141.
[116] OLIVERIA M, MCMULLAN R K, WUENSCH B J B. Single crystal neutron diffraction analysis of the cation distribution in the high-temperature phases α-Cu2−xS, α-Cu2−xSe, and α-Ag2Se.[J]. Solid State Ionics, 1988, 28: 1332–1337.
[117] LIU H, SHI X, XU F, et al. Copper ion liquid-like thermoelectrics[J]. Nat Mater, 2012, 11(5): 422–425.
[118] SU X, FU F, YAN Y, et al. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing[J]. Nat Commun, 2014(5): p4908.
[119] ZHAO L L, WANG X L, WANG J Y, et al. Superior intrinsic thermoelectric performance with ZT of 1.8 in single-crystal and melt-quenched highly dense Cu(2-x)Se bulks[J]. Sci Rep, 2015, 5: 7671.
[120] DISMUKES J P, EKSTROM L, STEIGMEIER E F, et al. Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300 K[J]. J Appl Phys, 1964, 35(10): 2899–2907.
[121] SAVVIDES N, GOLDSMID H J. Hot-press sintering of Ge-Si alloys[J]. J Mater Sci, 1980, 15(3): 594–600.
[122] DISMUKES J P, EKSTROM L. Homogeneous solidification of Ge-Si alloys[J]. Transacte Metallu Soc AIME, 1965, 233(4): 672–681.
[123] JOSHI G, LEE H, LAN Y. Enhanced Thermoelectric figure-of-merit  in nanostructured p-type silicon germanium bulk alloys[J]. Nano Lett, 2008, 8(12): 4670–4674.
[124] WANG X W, LEE H, LAN Y C, et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy[J]. Appl Phys Lett, 2008, 93(19): 193121.
[125] YU B, ZEBARJADI M, WANG H, et al. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites[J]. Nano Lett, 2012, 12(4): 2077–2082.
[126] ZEBARJADI M, JOSHI G, ZHU G, et al. Power factor enhancement by modulation doping in bulk nanocomposites[J]. Nano Lett, 2011, 11(6): 2225–2230.
[127] ZHU G H, LEE H, LAN Y C, et al. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium[J]. Phys Rev Lett, 2009, 102(19): 196803.
[128] LEE E K, YIN L, LEE Y, et al. Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties[J]. Nano Lett, 2012, 12(6): 2918–2923.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com