首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
MXene (Ti3C2)的制备及其吸波性能
作者:耿欣1 2 温广武1 2 杨思宇1 黄小萧1 闫旭1 吴赟3 
单位:1. 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001  2. 山东理工大学材料学院 山东 淄博 255091 3. 天津城建大学材料科学与工程学院 天津 300384 
关键词:碳化铝钛 碳化物/氮化物 腐蚀 吸波 
分类号:TB321
出版年,卷(期):页码:2018,46(3):315-321
DOI:
摘要:
基于氢氟酸(HF)选择腐蚀MAX相(Ti3AlC2)中Al原子层制备出MXene 的原理,通过ICP–OES测定滤液中Al离子含量而计算出MXene的转化率。调节HF浓度、反应温度和时间制备出4种高纯MXene材料;利用X射线衍射和扫描电子显微镜表征其晶体结构和微观组织形貌;用网络矢量仪测量其电磁参数并计算出反射率损耗。结果表明:高浓度40% HF组制备的MXene吸波峰在低频(2~13 GHz),样品H1和H2在厚度为3.5 mm时,分别在2.8和2.4 GHz处,反射率损耗达到极值:–7.5和–6 dB;而低浓度10% HF制备的高纯MXene吸波在高频段(5~18 GHz),当厚度为2 mm时,样品L1和样品L2分别在13.5和14.5 GHz处反射率损耗达到极值为–35和–16 dB。
 

 According to the principle that hydrofluoric acid (HF) selectively etches Al atoms layer in Ti3AlC2, the yield of MXene is calculated based on Al ions concentrations in the filter liquor, which is measured by ICP–OES. In this paper, four kinds of Ti3C2 (MXene) with a high yield were prepared by controlling HF concentration, temperature and holding time. The phase composition and microstructure were examined by X-ray diffraction and scanning electron microscopy. The reflection loss of MXene was calculated after the complex relative permittivity and permeability were measured by a microwave network analyzer. The high purity MXenes (40% HF group) in a wax matrix absorbs microwaves with the frequency in the range from 2 to 13 GHz, for sample H1 and H2, when the sample thickness is 3.5 mm, the lowest reflection coefficients are –7.5 and –6 dB at 2.8 and 2.4 GHz; while the MXenes (10% HF group)/wax composites are in the range from 5 to 18 GHz, for sample L1 and L2, when the sample thickness is 2 mm, the lowest reflection coefficients are –35 and –16 dB at 13.5 and 14.5 GHz.

基金项目:
国家自然科学基金青年基金(51602075)资助
作者简介:
耿 欣(1986—),女,博士后。
参考文献:

[1] NAGUIB M, KURTOGLU V, PRESSER J, et al. Two-dimensional

nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater, 2011,
23(37): 4248–4253.
[2] NAGUIB M, MOCHALIN V, BARSOUM M, et al. 25th anniversary
article: MXenes: a new family of two-dimensional materials[J]. Adv
Mater, 2014, 26(7): 992–1005.
[3] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional
transition metal carbides[J]. ACS nano, 2012, 6(2): 1322–1331.
[4] NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium
and vanadium carbides as promising materials for Li-Ion batteries[J]. J
Am Chem Soc, 2013, 135(43): 15966–15969.
[5] NAGUIB M, COME J, DYATKIN B, et al. MXene: a promising
transition metal carbide anode for lithium-ion batteries[J]. Electrochem
Commun, 2012, 16(1): 61–64.
[6] XIE X, DING W, NIE Y, et al. An extraordinarily stable catalyst: Pt
NPs supported on two-dimensional Ti3C2X2 (X=OH, F) nanosheets for
oxygen reduction reaction[J]. Chem Commun, 2013, 49(86):
10112–10114.
[7] RAMANATHAN T, ABDALA A, STANKOVICH S, et al.
Functionalized graphene sheets for polymer nanocomposites[J]. Nat
Nanotechnol, 2008, 3(6): 327–331.
[8] MASHTALIR O, NAGUIB M, DYATKIN B, et al. Kinetics of
aluminum extraction from Ti3AlC2 in hydrofluoric acid[J]. Mater
Chem Phys, 2013, 139(1): 147–152.
[9] GHIDIU M, LUKATSKAYA M.R, ZHAO M.Q., et al. Conductive
two-dimensional titanium carbide clay with high volumetric
capacitance[J]. Nature, 2014, 516(7529): 78–81.
[10] YANG J., CHEN B., SONG H., et al. Synthesis, characterization, and
tribological properties of two-dimensional Ti3C2[J]. Cryst Res Technol,
2014, 49(11): 926–932.
[11] ZHANG Q, TENG J, ZOU G, et al. Efficient phosphate sequestration
for water purification by unique sandwich-like MXene/magnetic iron
oxide nanocomposites[J]. Nanoscale, 2016, 8(13): 7085–7093.
[12] HAN M, YIN X, WU H, et al. Ti3C2 MXenes with modified surface for
high-performance electromagnetic absorption and shielding in the
X-band[J]. Acs Appl Mater Inter, 2016, 8(32): 21011–21019.
[13] LUO J, TAN X, ZHANG J, et al. Sn4+ ion decorated highly conductive
Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric
capacity and cyclic performance[J]. ACS nano, 2016, 10(2): 2491–2499.
[14] 刘渊, 刘祥萱, 王煊军, 等. 铈离子掺杂镍基铁氧体的制备及其吸
波性能[J]. 硅酸盐学报, 2013, 41(6): 756–760.
LIU Yuan, LIU Xiangxuan, WANG Xuanjun, et al. J Chin Ceram Soc,
2013, 41(6): 756–760.
[15] 蔡旭东, 王建江, 许宝才, 等. 热处理温度对空心复相陶瓷微珠结
构与微波电磁性能的影响[J]. 硅酸盐学报, 2013, 41(10): 27–34.
CAI Xudong, WANG Jianjiang, XU Baocai, et al. J Chin Ceram Soc,
2013, 41(10): 27–34.
[16] 韩彦明, 唐守柱, 何丙发. 多层金属栅网混合结构吸波特性分析[J].
现代雷达, 2013, 35(4): 58–61.
HAN Yanming, TANG Shouzhu, HE Bingfa. Mod Radar (in Chinese),
2013, 35(4):58–61.
[17] 周万成, 王婕, 罗发, 等. 高温吸波材料研究面临的问题[J]. 中国
材料进展, 2013, 8(37): 463–472.
ZHOU Wancheng, WANG Jie, LUO Fa, et al. Mater Chin (in Chinese).
2013, 8(37): 463–472.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com