首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
NiO催化氮化制备Si3N4/SiC复合材料及其高温性能
作者:张俊 刘江昊 赵万国 韩磊 古亚军 张海军 
单位:武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081 
关键词:氮化硅结合碳化硅复合材料 催化氮化 碳化硅晶须 高温性能 
分类号:TB35
出版年,卷(期):页码:2018,46(3):333-340
DOI:
摘要:
以原位生成的NiO纳米颗粒为催化剂,采用催化氮化的方法制备Si3N4/SiC复合材料,研究了所制备复合材料的常温物理性能、高温力学性能、抗热震性、抗氧化及抗冰晶石侵蚀性能。结果表明:1)所制备Si3N4/SiC复合材料的常温耐压强度及抗折强度值分别为131.0及24.6 MPa;2)Si3N4/SiC复合材料的高温抗折强度随着温度的升高而增加,1 573 K时达到最大值后又缓慢下降,但即使1 673 K时复合材料的高温抗折强度仍高于其常温抗折强度;3)Si3N4/SiC复合材料具有较好的抗热震性能,当实验温度为1 573 K,采用水冷时,其强度保持率仍有50%左右;4)所制备Si3N4/SiC复合材料开始氧化温度约为1 173 K,其抗氧化性能优于无催化剂时制备的Si3N4/SiC复合材料;5)所制备的复合材料具有良好的抗冰晶石侵蚀性能。由于NiO纳米颗粒催化生成大量的Si3N4晶须,这些晶须交互分布在骨料之间,形成网络状结构,从而提高了复合材料的性能。

  Si3N4/SiC composites were prepared by a catalytic nitridation method using in situ formed NiO nanoparticles (NPs) as a catalyst. The room-temperature and high-temperature mechanical properties of the as-prepared composites were investigated. The results show that the as-prepared Si3N4/SiC composite has the maximum cold compression strength (σCCS ) of 131.0 MPa and modulus of rupture (σMOR) of 24.6 MPa with NiO NPs as a catalyst. The high-temperature MOR (σHMOR) of the as-prepared composite firstly increases and then decreases with the increase of the temperature. The maximum σHMOR is obtained at 1 573 K. The σHMOR of the as-prepared composite even at 1 673 K is still greater than that of the composite at room temperature. The residual strength holding ratio of the as-prepared composites is approximately 50% at 1 573 K, indicating that the prepared Si3N4/SiC composite has the superior thermal shock resistance. The initial oxidation temperature of the prepared composite is 1 173 K, and the oxidation resistance of Si3N4/SiC composite prepared with NiO nanoparticle catalyst is greater than that of the sample without catalyst. The prepared composite has a well resistance to cryolite corrosion. The formation of Si3N4 whiskers with NiO nanoparticles catalyst is promoted, and the Si3N4 whiskers is distributed in aggregates to form a network-like structure, so that the performance of composite material is improved.

基金项目:
国家自然科学基金面上项目(51472185,51472184);湖北省教育厅高等学校优秀中青年科技创新团队计划(T20162);湖北省自然科学基金创新群体项目(2017CFA004)。
作者简介:
张 俊(1988—),男,硕士研究生。
参考文献:
[1] LEE S Y. Fabrication of Si3N4/SiC composite by reaction-bonding 
andgas-pressure sintering[J]. J Eur Ceram Soc, 2010, 81(5): 1262–1268.
[2] NAOKI K, YOSHIKAZU S, TATSUKI O, et al. Reaction-bonded and
superplastically sinter-forged silicon nitride-silicon carbide
nanocomposites[J]. J Eur Ceram Soc, 2010, 83(7): 1816–1818.
[3] YUAN L, YU J K, ZHANG S W. Fabrication of porous
reaction-bonded Si3N4–SiC composites[J]. Adv Mater Res, 2012,
391–392: 575–579.
[4] LI J, YUAN W J, WANG S, et al. Effect of sintering temperatures on
the reaction-bonded Si3N4/SiC composite ceramics[J]. Adv Mater Res,
2012, 399–401(3): 331–335.
[5] 王军凯, 李俊怡, 梁峰, 等. 以酚醛树脂为碳源低温催化反应合成
碳化硅粉体[J]. 硅酸盐学报, 2016, 44(12): 1798–1804.
WANG Junkai, LI Junyi, LIANG Feng, et al. J Chin Ceram Soc, 2016,
44(12): 1789–1804.
[6] KOVAR D, THOULESS M D, HALLORAN J W. Crack deflection
and propagation in layered silicon nitride/boron nitride ceramics[J]. J
Am Ceram Soc, 2010, 81(4): 1004–1112.
[7] 罗绍华, 张溪溪, 侯瑞, 等. 晶硅切割废粉为原料的反应烧结Si3N4
结合SiC 复相陶瓷的工艺研究[J]. 人工晶体学报, 2013, 42(8):
1668–1672.
LUO Shaohua, ZHANG Xixi, HOU Rui, et al. J Synth Cryst, 2013,
42(8): 1668–1672.
[8] ZHANG W R, YONG L I, WEN C. Effect of nano-SiC particles on the
performance and microstructure of Si3N4/SiC composite ceramics[J]. J
Synth Cryst, 2007, 36(5): 1207–1210.
[9] WAN J, MUKHERJEE A K. The creep behavior of Si3N4/SiC
nanocomposites[J]. JOM, 2003, 55(1): 28–33.
[10] MONIKA KAGIAROVA, SHOLLOCK B, BOCCACCINI A, et al.
Microstructure and creep behavior of a si3n4-sic
micronanocomposite[J]. J Am Ceram Soc, 2009, 92(2): 439–444.
[11] 古亚军, 李发亮, 张海军, 等. Ni 纳米颗粒催化氮化反应制备氮化
硅粉体[J]. 硅酸盐学报, 2017, 45(1): 120–125.
GU Yajun, LI Faliang, ZHANG Haijun, et al. J Chin Ceram Soc, 2017,
45(1): 120–125.
[12] LEE H J, EGUCHI K, YOSHIDA T. Preparation of ultrafine silicon
nitride, and silicon nitride and silicon carbide mixed powders in a
hybrid plasma[J]. J Am Ceram Soc, 2010, 73(11): 3356–3362.
[13] KIM Y, MITOMO M. Fabrication and mechanical properties of silicon
carbide–silicon nitride nanocomposites[J]. J Mater Sci, 2000, 35(23):
5885–5890.
[14] LIU Y, CHENG L, ZHANG L, et al. Microstructure and properties of
particle reinforced silicon carbide and silicon nitride ceramic matrix
composites prepared by chemical vapor infiltration[J]. Mat Sci Een A,
2008, 475(1): 217–223.
[15] KNOWLES K M, TURAN S. Boron nitride–silicon carbide interphase
boundaries in silicon nitride–silicon carbide particulate composites[J].
J Eur Ceram Soc, 2002, 22(9–10): 1587–1600.
[16] TURAN S, KNOWLES K M. The crystallography of interphase
boundaries between silicon carbide and silicon nitride in silicon
nitride–silicon carbide particulate composites[J]. Interf Sci, 2000,
8(2–3): 279–294.
[17] 耿桂宏, 罗绍华, 毕晓露, 等. Y2O3 对反应烧结Si3N4/SiC 复相陶瓷
组织和性能的影响[J]. 材料热处理学报, 2012, 33(7): 13–18.
GENG Guihog, LUO Shaohua, BI Xiaolu, et al. T Mater Heat Treat,
2012, 33(7): 13–18.
[18] YANG W, XIE Z, LI J, et al. Ultra-long single-crystalline α-Si3N4
nanowires: derived from a polymeric precursor[J]. J Am Ceram Soc,
2005, 88(6): 1647–1650.
[19] YANG W, ZHANG L, XIE Z, et al. Growth and optical properties of
ultra-long single-crystalline α-Si3N4 nanobelts[J]. Appl Phys A Mater,
2005, 80(7): 1419–1423.
[20] 古亚军, 曹迎楠, 李发亮, 等. 铁纳米颗粒催化氮化硅粉[J]. 硅酸
盐学报, 2014, 42(12): 1585–1590.
GU Yajun, CAO Yingnan, LI Faliang, et al. J Chin Ceram Soc, 2014,
42(12): 1585–1590.
[21] GU Y, LU L, ZHANG H, et al. Nitridation of silicon powders
catalyzed by cobalt nanoparticles[J]. J Am Ceram Soc, 2015, 98(6):
1762–1768.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com