首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
烧结助剂CuO掺杂对.97(K0.5Na0.5)NbO3–0.03Bi(Zn2/3Nb1/3)O3陶瓷相结构、微观形貌及电性能的影响
作者:程花蕾1 2 肖健1 高鹏1 严云云1 高拴平1 赵立芳1 
单位:1. 陕西省植物重点实验室 宝鸡文理学院化学与化工学院 陕西 宝鸡 721013  2. 凝固技术国家重点实验室 西北工业大学 西安 710072 
关键词:相结构 微观结构 电性能 铌酸钾钠 氧化铜 
分类号:TB34
出版年,卷(期):页码:2018,46(3):361-368
DOI:
摘要:
采用传统固相法制备了0.97(K0.5Na0.5)NbO3–0.03Bi(Zn2/3Nb1/3)O3+xCuO (KNN–3BZN–xCu)陶瓷,探讨烧结助剂CuO对陶瓷烧结,相结构,微观形貌及电性能的影响规律。结果表明:添加CuO降低了KNN–3BZN–xCu陶瓷的烧结温度。由于固液传质作用,陶瓷晶粒明显长大,形状发生了改变。添加CuO同时优化了陶瓷的介电性能,提高了弛豫性。KNN–3BZN–0.02Cu陶瓷在150~300 ℃温度范围内具有优异的电性能:介电常数εr=1 886,容温变化率–15%≤ΔC/C150 ℃≤15%,介电损耗tgδ<0.029。同时由于体积密度大,KNN–3BZN–0.02Cu陶瓷具有较高的压电性能:d33=164 pC/N和kp=0.37。
 

 Lead-free 0.97(K0.5Na0.5)NbO3–0.03Bi(Zn2/3Nb1/3)O3+xCuO (abbreviated as KNN–3BZN–xCu) ceramics were synthesized by a conventional mixed oxide method (i.e., the MO method). The effects of CuO doping amount on the structure and electrical properties of the ceramics were investigated. CuO, as a sintering aid, induces changes in both the microstructure and the electrical properties. The dielectric relaxor behaviors are also enhanced. The KNN–3BZN–0.02Cu ceramics exhibit a high dielectric permittivity (i.e., 1 886) and a small variation (i.e., ΔC/C150 ℃≤±15%), and a low dielectric loss (i.e., tgδ ≤0.029) at 150–300 ℃. The KNN–3BZN–0.02Cu ceramics also show the optimum piezoelectric properties (i.e., d33=164 pC/N, and kp=0.37) due to the maximum bulk density.

 
 
 
 
基金项目:
宝鸡文理学院重点项目(ZK15044);陕西省大学生创新创业项目(201610721039);陕西省教育厅专项项目(15JK1021);国家青年科学基金(21501007).
作者简介:
程花蕾(1982—),女,讲师。
参考文献:

[1] STRINGER C J, Structure–property-performance relationships of new

high temperature relaxors for capacitor applications[D] Pennsylvania,
The Pennsylvania State University, 2006.
[2] TSUKASAKI H, TANAKA Y, CHIBA Y K. Features of the relaxor
state in the simple-perovskite mixed-oxide system (1–x)Pb(Mg1/3Nb2/3)
O3–xPbTiO3[J]. J Phys Soc Jpn, 2017, 86(3): 034703–034711.
[3] SVIRSKAS S, BANYS J, KOJIMA S J. Broadband dielectric
spectroscopy of Pb-based relaxor ferroelectric (1–x)Pb(Mg1/3Nb2/3)
O3–xPbTiO3 with intermediate random fields[J]. J Appl Phys, 2017,
121(13): 134101.
[4] RAENGTHON N, SEBASTIAN T, CUMMING D, et al.
BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 ceramics for high-temperature capacitor
applications[J]. J Am Ceram Soc, 2012, 95(11): 3554–3561.
[5] RAENGTHON N, CANN D P. High temperature electronic properties
of BaTiO3–Bi(Zn1/2Ti1/2)O3–BiInO3 for capacitor applications[J]. J
Electroceram, 2012, 28(2/3): 167–171.
[6] CHEN X L, MA D D, CHEN J. Good thermal stability, high
permittivity, low dielectric loss and chemical compatibility with silver
electrodes of low-fired BaTiO3–Bi(Cu0.75W0.25)O3[J]. J Electronic
Mater, 2017, 46(1): 143–149.
[7] YANG Z T, DU H L, QU S B, et al. Lead-free relaxor ferroelectric
ceramics with high optical transparency and energy storage ability[J]. J
Mater Chem A, 2016, 4(9): 13778–13785.
[8] DU H L, ZHOU W C, LUO F, et al. Phase structure, dielectric
properties, and relaxor behavior of (K0.5Na0.5)NbO3–(Ba0.5Sr0.5)TiO3
lead-free solid solution for high temperature applications[J]. J Appl
Phys, 2009, 105(12): 124104.
[9] CHENG H L, DU H L, ZHOU W C, et al. Bi(Zn2/3Nb1/3)O3–
(K0.5Na0.5)NbO3 high-temperature lead-free ferroelectric ceramics with
low capacitance variation in a broad temperature usage range[J]. J Am
[10] CHEN X L, CHEN J, MA D D, et al. High relative permittivity, low
dielectric loss and good thermal stability of novel (K0.5Na0.5)NbO3–
Bi(Zn0.75W0.25)O3 solid solution[J]. Mater Lett, 2015, 145: 247–249.
[11] CHEN X L, MA D D, HUANG G S, et al. (K0.5Na0.5)NbO3–
Bi(Zn0.5Zr0.5)O3 perovskite ceramics: high relative permittivity, low
dielectric loss and good thermal stability[J]. Ceram Int, 2015, 41(10):
13883–13886.
[12] CHEN X L, LIU G F, HUANG G S, et al. Temperature-stable dielectric
and piezoelectric properties of (K0.5Na0.5)NbO3–Bi(Cu0.75W0.25)O3
solid solutions[J]. Mater Lett, 2017, 199: 128–130.
[13] QU B Y, DU H L, YANG Z T, et al. Lead-free relaxor ferroelectric
ceramics with high optical transparency and energy storage ability[J]. J
Mater Chem C, 2016, 4(9): 1795–1803.
[14] DITTMER R, ANTON E M, WOOK J. A high-temperature–capacitor
dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3–Bi1/2K1/2
TiO3[J]. J Am Ceram Soc, 2012, 95(11): 3519–3524.
[15] WU J G, XIAO D Q, Zhu J G. Potassium–sodium niobate lead-free
piezoelectric materials: past, present, and future of phase boundaries[J].
Chem Rev, 2015, 115(7): 2559–2595.
[16] MATSUBARA M, YAMAGUCHI T, KIKUTA K, et al. Sinterability
and piezoelectric properties of (K, Na)NbO3 ceramics with novel
sintering aid[J]. Jpn J Appl Phys Part 1, 2004, (43): 7159–7163.
[17] DU H L, LIU D J, TANG F S, et al. Microstructure, piezoelectric, and
ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead-free
ceramics[J]. J Am Ceram Soc, 2007, 90(9): 2824–2830.
[18] PARK H Y, SEO I T, CHOI M K, et al. Microstructure and
piezoelectric properties of the CuO-added (Na0.5K0.5)(Nb0.97Sb0.03)O3
lead-free piezoelectric ceramics[J]. J Appl Phys, 2008, 104(3):
034103.
[19] ZHAO Y J, ZHAO Y Z, HUANG R X, et al. Effect of sintering
temperature on microstructure and electric properties of 0.95(Na0.5K0.5)
NbO3–0.05Li(Nb0.5Sb0.5)O3 with copper oxide sintering aid[J]. J Am
Ceram Soc, 2011, 94(3): 656–659.
[20] WANG H, ZHAI X, Xu J. Effects of CuO doping on the structure and
properties lead-free KNN–LS piezoelectric ceramics[J]. J Mater Sci:
Mater in Electronics, 2013, 24(7): 2469–2472.
[21] UCHINO K, NOMURA S. Critical exponents of the dielectric
constants in diffused-phase-transition crystals[J]. Ferroelectrics, 1982,
44(1): 55–61.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com