首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
PAN基碳毡碳化过程中的结构演变及电化学特性
作者:张欢1 2 3 谭毅1 3 罗旭东2 陈娜2 
单位:1. 大连理工大学材料科学与工程学院 辽宁 大连 116024  2. 辽宁科技大学高温材料与镁资源工程学院 辽宁 鞍山 114051  3. 大连理工大学三束材料改性教育部重点实验室 辽宁 大连 116024 
关键词:聚丙烯腈基碳毡 碳化 钒电池 结构 电化学 
分类号:O646.5
出版年,卷(期):页码:2018,46(3):369-376
DOI:
摘要:
为获得钒电池正极材料的最佳碳化温度,提出了4种经由2阶段碳化获得聚丙烯腈基(PAN基)碳毡的方案,并对样品的结构演变和电化学性能进行了分析。结果表明:800~1 000 ℃是第1阶段碳化中纤维石墨网晶面快速扩大的温度区间,该阶段的碳化温度越高;而后在第2阶段碳化中获得的PAN基碳毡石墨化程度更高,尤其在经由1 200~1 400 ℃的第1阶段碳化后最为显著;由两段碳化温度分别在1 200和1 800 ℃获得的PAN基碳毡的电化学活性最高,可作为钒电池的正极材料。
 
 
 

 

 In order to obtain the optimum carbonization temperature of anode electrode materials for all vanadium redox battery, four schemes were proposed to obtain a polyacrylonitrile based carbon felt via two-stage carbonization. The structural evolution and electrochemical properties were investigated. The rapid expansion of fiber graphite network at the first stage of carbonization occurs at 800–1 000 ℃. The results show that a greater carbonization temperature at the first stage of carbonization gives a higher graphitization degree of polyacrylonitrile based carbon felt after the second stage of carbonization, especially at the first stage of carbonization temperature range from 1 200 to 1 400 ℃. The electrochemical activity of the polyacrylonitrile based carbon felt obtained in the two-stage carbonization at 1 200–1 800 ℃ is the maximum, which is suitable to be used as anode electrode materials for all vanadium redox battery.

 
 
 
基金项目:
国家自然科学基金(51702144)资助。
作者简介:
张 欢(1981—),女,博士研究生,讲师。
参考文献:

 [1] SKYLLAS-KAZACOS M, CHAKRABARTI M H, HAJIMOLANA S

A, et al. Progress in flow battery research and development[J]. J
Electrochem Soc, 2011, 158(8): 55–79.
[2] 张欢, 谭毅, 施伟, 等. 液流电池用PAN 碳毡材料的改性[J]. 材料
ZHANG Huan, TAN Yi, SHI Wei, et al. Mater Rev(in Chinese), 2014,
28(2): 124–130.
[3] ZENG Y K, ZHAO T S, ZHOU X L, et al. The effects of design
parameters on the charge-discharge performance of iron-chromium
redox flow batteries[J]. Appl Energ, 2016, 182(11): 204–209.
[4] WU Lantao, SHEN Yi, YU Lihong, et al. Boosting vanadium flow
battery performance by Nitrogen-doped carbon nanospheres
electrocatalyst[J]. Nano Energy, 2016, 28(10): 19–28.
[5] SHEN Junxi, LIU Suqin, HE Zhen, et al. Influence of antimony ions in
negative electrolyte on the electrochemical performance of vanadium
redox flow batteries[J]. Electrochim Acta, 2015, 151(1): 297–305.
[6] ZHOU Haipeng, XI Jingyu, LI Zhaohua, et al. CeO2 decorated graphite
felt as a high-performance electrode for vanadium redox flow
batteries[J]. RSC Adv, 2014, 4(11): 61912-61918.
[7] HUANG Kelong, LI Xiaogang, LIU Suqin, et al. Research progress of
vanadium redox flow battery for energy storage in China[J]. Renew
Energ, 2008, 33(2): 186–192.
[8] CHOI Chanyong, KIM Soohyun, KIM Riyu, et al. A review of
vanadium electrolytes for vanadium redox flow batteries[J]. Renew
Sust Energ Rev, 2017, 69(3): 263–274.
[9] PARASURAMAN Aishwarya, LIM Tuti mariana, MENICTAS Chris,
et al. Review of material research and development for vanadium
redox flow battery applications[J]. Electrochim Acta, 2013, 101(7):
27–40.
[10] 李倩, 谭毅, 施伟, 等. Fe/Cr 液流电池用PAN 基石墨毡电极改性研
究[J]. 电源技术, 2015, 39(7): 1442–1444.
LI Qian, TAN Yi, SHI Wei, et al. Chin J Power Sources(in Chinese),
2015, 39(7): 1442–1444.
[11] ZHANG Wenguang, XI Jingyu, LI Zhaohua, et al. Electrochemical
activation of graphite felt electrode for VO2+/VO2
+ redox couple
application[J]. Electrochim Acta, 2013, 89(2): 429–435.
[12] LIU Tao, LI Xianfeng, NIE Hongjiao, et al. Investigation on the effect
of catalyst on the electrochemical performance of carbon felt and
graphite felt for vanadium flow batteries[J]. J Power Sources, 2015,
286(7): 73–81.
[13] 贺福. 碳纤维及其应用技术[M]. 北京: 化学工业出版社, 2004:
84–112.
[14] 陈师, 石彦平, 吴琪琳. PAN 原丝在预氧化及碳化石墨化过程中微
观结构的变化研究[J]. 化工新型材料, 2016, 44(5): 121–123.
CHEN Shi, SHI Yanping, WU Qilin. New Chemical Mater(in Chinese),
2016, 44(5): 121–123.
[15] 温月芳, 曹霞, 杨永岗, 等. PAN 预氧化纤维的炭化过程[J]. 新型炭
材料, 2008, 23(2): 121–126.
WEN Yuefang, CAO Xia, YANG Yonggang, et al. New Carbon
Mater(in Chinese), 2008, 23(2): 121–126.
[16] 吕永根. 高性能炭纤维[M]. 北京: 化学工业出版社, 2016: 111–128.
[17] 蓝雁, 童元建, 李常清, 等. PAN 基碳纤维中碳元素含量与纤维结
构的关系[J]. 合成纤维工业, 2009, 32(5): 13–15.
LAN Yan, TONG Yuanjian, LI Changqing, et al. Chin Synth Fib Ind(in
Chinese), 2009, 32(5): 13–15.
[18] ZHANG Huan, TAN Yi, LI Jiayan, et al. Studies on properties of
rayon- and polyacrylonitrile-based graphite felt electrodes affecting
Fe/Cr redox flow battery performance[J]. Electrochim Acta, 2017,
248(9): 603–613.
[19] DIXON D, BABU D J, LANGNER J, et al. Effect of oxygen plasma
treatment on the electrochemical performance of the rayon and
polyacrylonitrile based carbon felt for the vanadium redox flow battery
application[J]. J Power Sources, 2016, 332(11): 240–248.
[20] MUSTAFA Ibrahim, LOPEZ Ivan, YOUNES Hammad, et al.
Fabrication of freestanding sheets of multiwalled carbon
nanotubes(buckypapers) for vanadium redox flow batteries and effects
of fabrication variables on electrochemical performance[J].
Electrochim Acta, 2017, 230(3): 222–235.
[21] JING Min, WANG Chengguo, ZHU Bo, et al. Effects of preoxidation
and carbonization technologies on tensile strength of PAN-based
carbon fiber[J]. J Appl Polym Sci, 2008, 108(2): 1259–1264.
[22] 刘焕章, 王成国, 王延相. 聚丙烯腈纤维预氧化工艺条件对其结构
和性能的影响[J]. 高科技纤维与应用, 2006, 31(1): 31–35.
LIU Huanzhang, WANG Chengguo, WANG Yanxiang. Hi-tech Fiber
Appl(in Chinese), 2006, 31(1): 31–35.
[23] WU Tao, HUANG Kelong, LIU Suqin, et al. Hydrothermal
ammoniated treatment of PAN-graphite felt for vanadium redox flow
battery[J]. J Solid State Electr, 2012, 16(2): 579–585.
[24] LIU Shuai, LI Dan, WANG Lihua, et al. Ethylenediaminefunctionalized
graphene oxide incorporated acid-base ion exchange
membranes for vanadium redox flow battery[J]. Electrochim Acta,
2017, 230(3): 204–211.
[25] GONZÁLEZ Zoraida, FLOX Cristina, BLANCO Clara, et al.
Outstanding electrochemical performance of a graphene-modified
graphite felt for vanadium redox flow battery application[J]. J Power
Sources, 2017, 338(1): 155–162.
[26] 江虹, 蔡光兰, 郭瑞松, 等. 石墨烯改性 LiFePO4/C 正极材料的低
温电化学性能[J]. 硅酸盐学报, 2016, 44(7): 925–930.
JIANG Hong, CAI Guanglan, GUO Ruisong, et al. J Chin Ceram Soc,
2016, 44(7): 925–930.
[27] 王旭红, 惠洋, 顾渊铠, 等. 石墨烯改性碳纤维基Pt–Sn 直接燃料乙
醇电池阳极催化剂[J]. 硅酸盐学报, 2017, 45(4): 483–489.
WANG Xuhong, HUI Yang, GU Yuankai, et al. J Chin Ceram Soc,
2017, 45(4): 483–489.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com