首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
 YAG对TiCN陶瓷刀具材料力学性能及烧结工艺的影响
作者:任伟玮 何福坡 伍尚华 
单位:广东工业大学机电工程学院 广州 510006 
关键词:复合陶瓷 碳氮化钛 力学性能 钇铝石榴石 
分类号:Q174.75
出版年,卷(期):页码:2018,46(3):388-393
DOI:
摘要:
以钇铝石榴石(YAG)为添加相,采用热压烧结法制备YAG–TiCN复合陶瓷。研究了不同YAG添加量对复合陶瓷的物相、显微结构、力学性能的影响。结果表明:热压烧结过程中TiCN和YAG不发生反应;YAG第二相明显改善了TiCN的烧结性能,并有助于提高YAG–TiCN复合陶瓷的硬度、抗弯强度和断裂韧性;YAG含量在10%(质量分数)时复合陶瓷的致密度达到99.3%,并且Vickers硬度、断裂韧性、抗弯强度均达到最高,分别为:20.48 GPa、7.27 MPa·m1/2、570.36 MPa,远远超过TiCN单相陶瓷的致密度以及力学性能:88.04%、9.33 GPa、5 MPa·m1/2、204.45 MPa。YAG作为添加相可显著提高TiCN等难烧结陶瓷的致密度和力学性能。
 
 
 

YAG–TiCN composite ceramics were prepared via hot pressed sintering when yttrium aluminium garnet (YAG) was added. The effect of YAG amount on the phase composition, microstructure, and mechanical properties of the composite ceramic was investigated. The results show that no reaction between YAG and TiCN occurs during the hot pressing sintering process. The secondary phase YAG can improve the sintering performance of TiCN as well as the hardness, the flexure strength and fracture toughness of YAG–TiCN composite ceramic. The YAG–TiCN composite ceramic has the optimum mechanical performance at YAG addition of 10%. The Vickers hardness, fracture toughness, flexure strength of composite ceramics containing 10% YAG are 20.48 GPa,   7.27 MPa·m1/2, and 570.36 MPa, respectively, which are greater than those of pure TiCN ceramics (i.e., 9.33 GPa, 5.5 MPa·m1/2, and 204.45 MPa). The addition of YAG can markedly improve the density and mechanical properties of ceramics with poor sinterability, such as TiCN, etc.

 
 
 
基金项目:
广东省引进领军人才专项资金(400120001);广东省教育厅自然科学研究项目(501120024)资助。
作者简介:
任伟玮(1993—),男,硕士研究生。
参考文献:

 [1] KWONAW T, PARK J S. Eect of WC and group IV carbides on the

cutting performance of Ti(C,N) cermet tools[J]. Int J Mach Tools
Manuf, 2004, 44(4): 341–346.
[2] PIRSO J, LETUNOVITS S, VILJUS M. Friction and wear behavior of
cemented carbides[J]. Wear, 2004, 257(3/4): 257–265.
[3] ETTMAYER P, KOLASKA H, LENGAUER W, et al. Ti(C,N)
Cermets–metallurgy and properties[J]. J Hard Mater, 1995, 13(6):
343–351.
[4] LIUA C, LINA H, HE Y H. Influence of Mo2C and TaC additions on
the microstructure and mechanical properties of Ti(C,N)-based
cermets[J]. Ceram Int, 2016, 42(2): 3569–3574.
[5] ZHAO Y, ZHENG Y, ZHOU W, et al. Effect of carbon addition on the
densification behavior, microstructure evolution and mechanical
properties of Ti(C,N)–based cermets[J]. Ceram Int, 2016, 42(4):
5487–5496.
[6] ZHANG S. Titanium carbonitride-based cermets: processes and
properties[J]. Mat Sic Eng A–Struct, 1993, 163(1): 141–148.
[7] DUSZA J, PARILAK L, SLESAR M. Fracture characteristics of
ceramic and cermet cutting tools[J]. Ceram Int, 1987, 13(3): 133–137.
[8] ZHOU S, LUO C, WUA X, et al. Preparation of Ni–Mo–C/Ti(C,N)
coated powders and its influence on the microstructure and mechanical
properties of Ti(C,N)-based cermets[J]. Ceram Int, 2015, 41(8):
9259–9264.
[9] CHEN L, WANG S Q, ZHOU S Z, et al. Microstructure and
mechanical properties of Ti (C, N) and TiN/Ti (C, N) multilayer PVD
coatings[J]. Int J Refract Met Hard Mater, 2008, 478(1/2): 336–339.
[10] CHEN X, XU J, XIAO Q. Cutting performance and wear
characteristics of Ti (C, N)-based cermet tool in machining hardened
steel[J]. J Refract Met Hard Mater, 2015, 52: 143–150.
[11] 李喜坤, 邱观明, 丘泰, 等. 热压烧结制备Al2O3/TiCN–0.2% Y2O3
复合材料[J]. 中国稀土学报, 2006, 24(6): 705–709.
LI Xikun, QIU Guanming, QIU Tai, et al. Preparation of hot pressing
sintering Al2O3/TiCN–0.2% of Y2O3 composite materials[J]. J Rare
Earth, 2006, 24(6): 705–709.
[12] CHEN M, ZHUANG Q M, LIN N, et al. Improvement in
microstructure and mechanical properties of Ti(C,N)–Fe cermets with
the carbon additions[J]. J Alloy Compd, 2017, 701: 408–415.
[13] XIONG H W, WEN Y, GAN X P, et al. Influence of coarse TiCN
content on the morphology and mechanical properties of ultrafine
TiCN-based cermets[J]. Mat Sci Eng A–Struct, 682: 648–655.
[14] VERMA V, KUMAR B V M. Tribological characteristics of
conventionally sintered TiCN–WC–Ni/Co cermets against cemented
carbide[J]. Ceram Int, 43(1): 368–375.
[15] YUAN Z B, CHENG J T. Microstructure evolution and densification
kinetics of Al2O3/Ti(C,N) ceramic tool material by microwave
sintering[J]. Int J Refract Met H, 2016, 65: 225–229.
[16] TAN B, Chen K, Huang Z H. Influence of the Binder Amount on the
Properties of the Non–Sintering Ti(C,N)–Si3N4–SiC Composite
Refractories[C]//Dianchi Advanced Materials Forum, Kunming, China,
2014: 221–224.
[17] 肖浩然. YAG 陶瓷球制备工艺及其性能研究[D]. 武汉: 武汉理工大
学, 2012.
XIAO Haoran. YAG ceramic ball preparation process and its
performance study(in Chinese dissertation). Wuhan: Wuhan University
of Technology, 2012.
[18] KIM B A, YOON H K. Mechanical properties of silicon carbide
sintered with additive Y3Al5O12[C]//13th International Conference on
Fusion Reactor Materials, Nice, France, 2009: 386–88.
[19] SONG J G, LI J G. Preparation of High-density YAG/ZrB2 Multi-phase
Ceramics by Spark Plasma Sintering[J]. J Ceram Process Res, 2007,
8(5): 356–358.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com