[1] KWONAW T, PARK J S. Eect of WC and group IV carbides on the
cutting performance of Ti(C,N) cermet tools[J]. Int J Mach Tools
Manuf, 2004, 44(4): 341–346.
[2] PIRSO J, LETUNOVITS S, VILJUS M. Friction and wear behavior of
cemented carbides[J]. Wear, 2004, 257(3/4): 257–265.
[3] ETTMAYER P, KOLASKA H, LENGAUER W, et al. Ti(C,N)
Cermets–metallurgy and properties[J]. J Hard Mater, 1995, 13(6):
343–351.
[4] LIUA C, LINA H, HE Y H. Influence of Mo2C and TaC additions on
the microstructure and mechanical properties of Ti(C,N)-based
cermets[J]. Ceram Int, 2016, 42(2): 3569–3574.
[5] ZHAO Y, ZHENG Y, ZHOU W, et al. Effect of carbon addition on the
densification behavior, microstructure evolution and mechanical
properties of Ti(C,N)–based cermets[J]. Ceram Int, 2016, 42(4):
5487–5496.
[6] ZHANG S. Titanium carbonitride-based cermets: processes and
properties[J]. Mat Sic Eng A–Struct, 1993, 163(1): 141–148.
[7] DUSZA J, PARILAK L, SLESAR M. Fracture characteristics of
ceramic and cermet cutting tools[J]. Ceram Int, 1987, 13(3): 133–137.
[8] ZHOU S, LUO C, WUA X, et al. Preparation of Ni–Mo–C/Ti(C,N)
coated powders and its influence on the microstructure and mechanical
properties of Ti(C,N)-based cermets[J]. Ceram Int, 2015, 41(8):
9259–9264.
[9] CHEN L, WANG S Q, ZHOU S Z, et al. Microstructure and
mechanical properties of Ti (C, N) and TiN/Ti (C, N) multilayer PVD
coatings[J]. Int J Refract Met Hard Mater, 2008, 478(1/2): 336–339.
[10] CHEN X, XU J, XIAO Q. Cutting performance and wear
characteristics of Ti (C, N)-based cermet tool in machining hardened
steel[J]. J Refract Met Hard Mater, 2015, 52: 143–150.
[11] 李喜坤, 邱观明, 丘泰, 等. 热压烧结制备Al2O3/TiCN–0.2% Y2O3
复合材料[J]. 中国稀土学报, 2006, 24(6): 705–709.
LI Xikun, QIU Guanming, QIU Tai, et al. Preparation of hot pressing
sintering Al2O3/TiCN–0.2% of Y2O3 composite materials[J]. J Rare
Earth, 2006, 24(6): 705–709.
[12] CHEN M, ZHUANG Q M, LIN N, et al. Improvement in
microstructure and mechanical properties of Ti(C,N)–Fe cermets with
the carbon additions[J]. J Alloy Compd, 2017, 701: 408–415.
[13] XIONG H W, WEN Y, GAN X P, et al. Influence of coarse TiCN
content on the morphology and mechanical properties of ultrafine
TiCN-based cermets[J]. Mat Sci Eng A–Struct, 682: 648–655.
[14] VERMA V, KUMAR B V M. Tribological characteristics of
conventionally sintered TiCN–WC–Ni/Co cermets against cemented
carbide[J]. Ceram Int, 43(1): 368–375.
[15] YUAN Z B, CHENG J T. Microstructure evolution and densification
kinetics of Al2O3/Ti(C,N) ceramic tool material by microwave
sintering[J]. Int J Refract Met H, 2016, 65: 225–229.
[16] TAN B, Chen K, Huang Z H. Influence of the Binder Amount on the
Properties of the Non–Sintering Ti(C,N)–Si3N4–SiC Composite
Refractories[C]//Dianchi Advanced Materials Forum, Kunming, China,
2014: 221–224.
[17] 肖浩然. YAG 陶瓷球制备工艺及其性能研究[D]. 武汉: 武汉理工大
学, 2012.
XIAO Haoran. YAG ceramic ball preparation process and its
performance study(in Chinese dissertation). Wuhan: Wuhan University
of Technology, 2012.
[18] KIM B A, YOON H K. Mechanical properties of silicon carbide
sintered with additive Y3Al5O12[C]//13th International Conference on
Fusion Reactor Materials, Nice, France, 2009: 386–88.
[19] SONG J G, LI J G. Preparation of High-density YAG/ZrB2 Multi-phase
Ceramics by Spark Plasma Sintering[J]. J Ceram Process Res, 2007,
8(5): 356–358.
|