首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
模拟煤气化炉气氛下酸性渣对Si3N4–SiC材料的侵蚀及其机理
作者:蔡斌利1 李红霞1 2 赵世贤2 孙红刚2 李鹏涛2 闫双志2 万龙刚2 王刚2 曹战民3 
单位:1. 北京科技大学材料科学与工程学院 北京 100083 2. 中钢集团洛阳耐火材料研究院有限公司先进耐火 材料国家重点实验室 河南 洛阳 471039 3. 北京科技大学冶金与生态工程学院 北京 100083 
关键词:煤气化炉 还原性气氛 氮化硅结合碳化硅 侵蚀机理 热力学模拟 
分类号:TQ175
出版年,卷(期):页码:2018,46(3):434-442
DOI:
摘要:
在回转抗渣炉内模拟气化炉1 500 ℃时的工作环境,进行熔渣对Si3N4结合SiC试样的动态侵蚀实验,利用扫描电镜观察侵蚀后试样的显微结构,并结合热力学模拟研究酸性煤渣对Si3N4–SiC材料的侵蚀机理。结果表明:实验条件下,熔渣中的FeO与Si3N4–SiC材料发生氧化还原反应,在试样表面形成C、Si、Fe合金;Si3N4–SiC试样发生活性氧化,形成气体和方石英,且方石英向熔渣中溶解;氧化反应改变了试样中气孔表面的结构组成,熔渣通过气孔向试样中渗透,在试样表面形成很薄的反应层。反应层的形成加剧了熔渣向试样中的渗透及试样向熔渣中的溶解。因此,Si3N4–SiC材料不适合用做水煤浆气化炉内衬材料。
 
 
 
 

 The dynamic erosion experiments of Si3N4 bonded SiC samples interacted with acid coal slag were conducted in an improved rotary drum furnace under slagging gasifier conditions at 1 500 ℃. The erosion mechanism was also investigated by thermal dynamic simulation and scanning electron microscopy. The results show that Si–Fe–C alloy is formed on the surface of the samples under the experimental atmosphere when Si3N4 bonded SiC materials react with FeO. In addition, Si3N4 bonded SiC materials are also oxidized to form gases and cristobalite, which dissolve into molten slag eventually. The oxidation reaction can change the pore structures on the surface, resulting in the slag penetration into the samples through the pores to form a thin reaction layer. The reaction layer eventually aggravates the slag penetration and brick dissolution. Therefore, Si3N4–SiC is not suitable as a lining material of coal-water slurry gasifier.

 
 
 
基金项目:
NSFC–河南联合基金重点支持项目(U1604252)资助。
作者简介:
蔡斌利(1979—),男,博士研究生,工程师。
参考文献:

 [1] 贺永德. 现代煤化工技术手册[M]. 北京: 化学工业出版社, 2004, 5–10.

[2] KWONG K, PETTY A, BENNETT J, et al. Wear mechanisms of
chromia refractories in slagging gasifiers[J]. Int J Appl Ceram Technol,
2007, 4(6): 503–513.
[3] KWONG K, BENNETT J, KRABBE R, et al. Engineered refractories for
slagging gasifiers[M]. Hawaii:John Wiley & Sons, Inc, 2006, 295–304.
[4] NAKANO J, SRIDHAR S, BENNETT J, et al. Interactions of
refractory materials with molten gasifier slags[J]. Int J Hydrogen
Energy, 2011, 36(7): 4595–4604.
[5] OBANA T. Trend of chrome–free refractory materials[J].J Technol
Assoc Refract Jpn, 2010, 30(4): 243–249.
[6] LEE Y, NASSARALLA C L. Formation of hexavalent chromium by
reaction between slag and magnesite–chrome refractory[J]. Metall
Mater Trans B, 1998, 29(2): 405–410.
[7] CHEN Y, LAI Y, LIN C, et al. Controlling sintering atmosphere to
reduce the hazardous characteristics of low–energy cement produced
with chromium compounds[J]. J Clean Product, 2013, 43: 45–51.
[8] SOMIYA S, INOMATA Y. Silicon Carbide Ceramics–1[M]. Dordrecht:
Springer Netherlands, 1991.
[9] SOMIYA S, MITOMO M, YOSHIMURA M. Silicon Nitride–1[M].
New York: Elsevier Science Publishers, 1991.
[10] KIM H B, OH M S. Changes in microstructure of a high chromia
refractory due to interaction with infiltrating coal slag in a slagging
gasifier environment[J].Ceram Int, 2008, 34(8): 2107–2116.
[11] KANEKO T K, BENNETT J P, SRIDHAR S, et al. Effect of
temperature gradient on industrial gasifier coal slag infiltration into
alumina refractory[J]. J Am Ceram Soc, 2011, 94(12): 4507–4515.
[12] KANEKO T K, ZHU J, THOMAS H, et al. Influence of oxygen partial
pressure on synthetic coal slag infiltration into porous Al2O3
refractory[J]. J Am Ceram Soc, 2012, 95(5): 1764–1773.
[13] KANEKO T K, THOMAS H, BENNETT J P, et al. Synthetic coal slag
infiltration into varying refractory materials[J]. J Am Ceram Soc, 2012,
95(10): 3325–3333.
[14] KENNETH KANEKO T, ZHU J, HOWELL N, et al. The effects of
gasification feedstock chemistries on the infiltration of slag into the
porous high chromia refractory and their reaction products[J]. Fuel,
2014, 115: 248–263.
[15] KENNEDY C. Compatibility of water–cooled chromia-containing
refractories with a high iron oxide acidic coal–ash slag at 1575°C[J]. J.
Mater Energy Syst, 1981, 3(3): 39–47.
[16] CAI B, LI H, ZHAO S, et al. Study on the erosion mechanism of acid
coal slag interactions with silicon carbide materials in the simulated
atmosphere of a coal gasifier[J]. Ceram Int, 2017, 43(5): 4419–4426.
[17] BERJONNEAU J, PRIGENT P, POIRIER J. The development of a
thermodynamic model for Al2O3–MgO refractory castable corrosion by
secondary metallurgy steel ladle slags[J]. Ceram Int, 2009, 35(2):
623–635.
[18] FONT O, QUEROL X, HUGGINS F E, et al. Speciation of major and
selected trace elements in IGCC fly ash[J]. Fuel, 2005, 84(11): 1364–1371.
[19] 山口明良. 实用热力学及其在高温陶瓷中的应用[M]. 武汉: 武汉工
业大学出版社, 1993: 39–66.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com