首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
溶剂热法制备镍掺杂铁基金属有机骨架化合物及其储锂特性
作者:曾群1 高国梁1 2 王德宇2 沈彩2 
单位:1. 华南师范大学信息光电子科技学院 广东省微纳光子功能材料与器件重点实验室 广州 510006  2. 中国科学院宁波材料技术与工程研究所 浙江 宁波315201 
关键词:溶剂热 有机骨架材料 锂电池 负极材料 
分类号:TQ174.75
出版年,卷(期):页码:2018,46(4):0-0
DOI:
摘要:
采用溶剂热合成法制备出镍掺杂的铁基金属有机骨架化合物(Fe-MOF),通过X射线衍射,扫描电子显微镜等对材料的形貌与结构进行了测试与表征,并测试了其作为锂电池负极材料的电化学性能。结果表明:材料为块状结构,颗粒大小分布为100~200 nm。在电流密度为500 mA/g的条件下,经过400次充放电工作循环后,容量稳定在511.8 mA·h/g,相应的Coulomb效率为99.5%,显示出材料较高的比容量和优异的循环稳定性,是一种潜在的锂电池负极材料。
基金项目:
基金项目:宁波市自然科学基金(2016A610275);2015年广州市珠江科技新星项目(201506010001);华南师范大学研究生科研创新基金(2016lkxm63);铁电压电材料与器件湖北省重点实验室开放科技基金(201606)资助项目。
作者简介:
第一作者:曾 群(1981—),女,副教授。
参考文献:

[1] JOHN B G, YOUNGSIK K. Challenges for rechargeable Li batteries[J]. Chem Mater, 2010, 22(3): 587–603.

[2] BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angew Chem Int Ed, 2008, 47(16): 2930–2946.
[3] JACHE B, ADELHELM P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angew Chem Int Ed, 2014, 53(38): 10169–10173.
[4] KE F S, WU Y S, DENG H X. Metal-organic frameworks for lithium ion batteries and supercapacitors[J]. J Solid State Chem, 2015, 223: 109–121.
[5] FEREY G, MILLANGE F, MORCRETTE M, et al. Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties[J]. Angew Chem Int Ed, 2007, 46(18): 3259–3263.
[6] LIU W, YANG H Z, ZHAO L, et al. Mesoporous flower-like Co3O4/C nanosheet composites and their performance evaluation as anodes for lithium ion batteries[J]. Electrochim Acta, 2016, 207: 293–300.
[7] ZHAO C C, SHEN C, HAN W Q. Metal-organic nanofibers as anodes for lithium-ion batteries[J]. RSC Adv, 2015, 5(26): 20386–20389.
[8] MAITI S, PRAMANIK A, MANJU U, et al. Cu3 (1,3,5- benzenetricarboxylate)2 metal-organic framework: A promising anode material for lithium-ion battery[J]. Micropor Mesopor Mater, 2016, 226: 353–359.
[9] CUI X D, XIE Z Q, WANG Y. Novel CoS2 embedded carbon nanocages by direct sulfurizing metal-organic frameworks for dye-sensitized solar cells[J]. Nanoscale, 2016, 8(23): 11984–11992.
[10] JIN Y, ZHAO C C, SUN Z X, et al. Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries[J]. RSC Adv, 2016, 6(36): 30763–30768.
[11] YE X, ZHANG W, LIU Q, et al. One-step synthesis of Ni-doped SnO2 nanospheres with enhanced lithium ion storage performance[J]. New J Chem, 2014, 39(1): 130–135.
[12] ZHANG Z C, CHEN Y F, HE S, et al. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions[J]. Angew Chem Int Ed, 2014, 53(46): 12517–12521.
[13] WANG L, WU Y Z, CAO R, et al. Fe/Ni metal-organic frameworks and their binder-free thin films for efficient oxygen evolution with low overpotential[J]. ACS Appl Mater Interface, 2016, 8(26): 16736–16743.
[14] LI H, SHI W, ZHAO K N, et al. Enhanced hydrostability in Ni-doped MOF-5[J]. J Am Chem, 2012, 51: 9200–9207.
[15] OYAIUO K, HATEMATA A, CHOI W, et al. Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: expanding the functional horizon of polyimides[J]. J Mater Chem, 2010, 20(26): 5404–5410.
[16] SUGA T, OHSHIRO H, SUGITA S, et al. Emerging N-Type redox-active radical polymer for a totally organic polymer-based rechargeable battery[J]. Adv Mater, 2009, 21(21): 1627–630.
[17] CHEN H Y, MICHEL A, MATTHIEU C, et al. Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery[J]. J Am Chem, 2009, 131: 8984–8988.
[18] SU Y S, ARUMUMGAM M. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J]. Nat Commun, 2012, 3(6): 1166–1171.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com