首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
不同温度下三维掺氮石墨烯的制备及电化学性能
作者:李子庆 赫文秀 张永强 王延铭 刘斌 
单位:内蒙古科技大学化学与化工学院 内蒙古 包头 014010 
关键词:氧化石墨 氮掺杂 尿素 水热法 比电容 
分类号:TQ127.1+6
出版年,卷(期):页码:2018,46(4):0-0
DOI:
摘要:
采用改进的Hummers方法制备氧化石墨(GO)。以尿素作为还原剂和掺氮剂,采用一步水热法合成掺氮石墨烯。通过Fourier变换红外光谱、X射线粉末衍射、场发射扫描电子显微镜、Raman光谱、X射线光电子能谱和电导率测量等手段对样品的形貌结构组成进行表征,通过循环伏安、电化学交流阻抗、恒流充放电测试了样品的电化学性能。结果表明:不同温度的水热条件下,尿素可有效还原GO,并得到4.07%~9.18%不同氮含量的掺氮石墨烯,其中N元素以“Pyridinic N”、“Pyrrolic N”、“Graphitic N”3种形式存在并掺杂到石墨烯晶格中。在6 mol/L的KOH电解液中,180 ℃下水热得到的掺氮石墨烯在0.3 A/g电流密度下比电容最高达187.6 F/g。
 
 
 
基金项目:
基金项目:国家自然科学基金(21766024);内蒙古自然科学基金(2015MS0208);内蒙古自治区高等学校青年科技英才计划-青年科技领军人才A类项目(NJYT-14-A08);包头市科技计划项目(2015C2004-1,2016-4)资助。
作者简介:
第一作者:李子庆(1992—),男,硕士研究生。
参考文献:

[1] ZHANG Y B, TAN Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene[J]. Nature, 2005, 438: 201?204.

[2] MURALI S, STOLLER M D, GANESH K J, et al. Carbon based supercapacitors produced by activation of graphene[J]. Science, 2011, 332: 1537?1541.
[3] BO X, HAN C, ZHANG Y, et al. confined nanospace synthesis of less aggregated and porous nitrogen-doped graphene as metal-free electrocatalysts for oxygen reduction reaction in alkaline solution[J]. ACS Appl Mater Interface, 2014, 6(4): 3023?3030.
[4] XU Y H, LIU J Q. Graphene as transparent electrodes: fabrication and new emerging applications[J]. Small, 2016, 12(11): 1400?1419.
[5] PARK S, RODNEY S. Chemical methods for the production of graphenes[J]. Nat Nanotech, 2009, 4: 217?224.
[6] JEON K J, LEE Z, POLLAK E, et al. Fluorographene: A wide bandgap semiconductor with ultraviolet luminescence[J]. ACS Nano, 2011, 5(2): 1042?1046.
[7] HE L M, JING L Q, LUAN Y. B, et al. Enhanced visible activities of α-Fe2O3 by coupling N-doped graphene and mechanism insight[J]. ACS Catal, 2014, 4(3): 990?998.
[8] GUO B D , LIU Q A, CHEN E D, et al. Controllable N-doping of graphene[J]. Nano Lett, 2010, 10: 4975?4980.
[9] TOMMASO C, VALENTINA T. Multistable RIPPLING OF Graphene on SiC: A density functional theory study[J]. J Phys Chem C, 2016, 120(14): 7670?7677.
[10] QU L T, LIU Y, BAEK J B, et al. Nitrogen-Doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010, 4(3): 1321?1326.
[11] MEYER J C, KURASCH S, PARK H J, et al. Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy U[J]. Nat Mater, 2011, 10: 209?215.
[12] WANG G X, SHEN X P, WANG B, et al. Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets[J]. Carbon, 2009, 47(5): 1359?1364.
[13] BOUKHVALOV D W, KATSNELSON M I. Chemical functionalization of graphene withdefects[J]. Nano Lett, 2008, 8: 4373?4379.
[14] SUNDARAM R S, GOMEZ C, BALASUBRAMANIAN K, et al. Electrochemical modification of graphene[J]. Adv Mater, 2008, 20: 3050?3053.
[15] USACHOV D, VILKOV O, GRUNEIS A, et al. Nitrogen-doped graphene: efficient growth, structure, and electronic proper-ties[J]. Nano Lett, 2011, 11: 5401?5407.
[16] LIANG J, JIAO Y, JARONIEC M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Int Ed, 2012, 124: 11664?11668.
[17] XU L, CHEN H, SHU K. Ni(OH)2/RGO nanosheets constituted 3D structure for high-performance supercapacitors[J]. J Sol-Gel Sci Technol, 2016, 77(2): 463?469. 
[18] JIN Z, YAO J, KITTRELL C T, et al. Growth of Bilayer graphene on insulating substrates[J]. ACS Nano, 2011, 5: 8241?8247.
[19] REDDY A L, SRIVASTAVA A, GOWDA S R, et al. Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study[J]. ACS Nano, 2010, 4: 625?630.
[20] QIAN W, CUI X, HAO R, et al. Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction[J]. ACS Appl Mater. Interface, 2011, 3(7): 2259?2264.
[21] WAKELAND S, MARTINEZ R, GREY J K. Production of graphene from graphite oxide using urea as expansion-reduction agent[J]. Carbon, 2010, 48: 3463?3470.
[22] SUN L, WANG L, TIAN C G, et al. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage[J]. RSC Adv, 2012, 2: 4498?4506.
[23] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80(6): 1339?339.
[24] XU J, WANG G X, CAO J Y, et al. Supercapacitor performances of rich nitrogen-doped mesoporous graphene fabricated by a facile template-free copyrolysis process[J]. Ionics, 2016, 22(07): 1177?1184.
[25] SHENG Z H, SHAO L, CHEN J J, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS Nano, 2011, 5: 4350?4358.
[26] PARK J, JANG Y, KIM Y, et al. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction[J]. Phys Chem Chem Phys, 2014, 16: 103?109.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com