首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
N掺杂6H-SiC电子结构的第一性原理计算
作者:林龙1 2 祝令豪1 徐永豪3 张志华4 陶华龙4 黄敬涛1 王朋涛1 李先宏1 张战营1 赵瑞奇5 
单位:1. 河南理工大学 环境友好型无机材料重点实验室培育基地 河南 焦作 454000  2. 河南理工大学数学与信息科学学院 河南 焦作 454000 3. 河南理工大学物理与电气信息学院 河南 焦作 454000  4. 大连交通大学材料科学与工程学院 辽宁 大连 116028 5. 河南理工大学材料科学与工程学院 河南 焦作 45400 
关键词:稀磁半导体 电子结构 磁性 第一性原理 6H-碳化硅 
分类号:O472
出版年,卷(期):页码:2018,46(4):0-0
DOI:
摘要:
采用基于密度泛函理论的第一性原理平面波赝势方法,对本征6H-SiC和Si空位、C空位、N掺杂6H-SiC的电子结构及磁性进行了计算。计算结果表明:本征6H-SiC和单一的N掺杂6H-SiC均没有磁性,但可以通过Si空位的引入产生自旋极化。在N和Si空位共掺杂6H-SiC的结构中,Si空位近邻的C原子自旋向上与自旋向下的态密度图明显不对称,主要是由与Si空位近邻的C-2p轨道的自旋极化引起的。N和2个Si空位共掺杂6H-SiC的结构呈现反铁磁性。
 
基金项目:
国家自然科学基金项目(21303041,51372027,51372026,51372056,51172065);河南省自然科学基金(162300410116)资助项目。
作者简介:
林 龙(1978—),男,博士,副教授
参考文献:

 [1] MORKOC H, STRITE S, GAO G B, et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies[J]. J Appl Phys, 1994, 76(3): 1363–1398.

[2] Tairov Y M, Tsvetkov V F. General principles of growing large-size single crystals of various silicon carbide polytypes[J]. J Cryst Growth, 1981, 52: 146–150.
[3] CKELL K, WENZIEN P B, BECHSTEDT F. Electronic properties of cubic and hexagonal SiC polytypes from ab initio calculations[J]. Phys Rev B Condens Matter, 1994, 50(15): 10761–10768.
[4] LAMBRECHT W R, SEGALL B. Band-structure analysis of the conduction-band mass anisotropy in 6H and 4H SiC[J]. Phys Rev B Condens Matter, 1995, 52(4): R2249–R2252.
[5] CHEN J, RUAN Y, LI L, et al. Electrical properties and annealing behavior of nitrogen doped 6H-SiC crystals irradiated by heavy neutron[J]. J Chin Ceram Soc, 2013, 41(6): 812–819.
[6] CARLOS W E, GLASER E R, SHANABROOK B V. Optical and magnetic resonance signatures of deep levels in semi-insulating 4H SiC[J]. Phys B Condens Matter, 2003, 340/342(50): 151–155.
[7] LIU Y, WANG G, WANG S, et al. Defect-Induced Magnetism in Neutron Irradiated 6H-SiC Single Crystals[J]. Phys Rev Lett, 2011, 106(8): 087205(1–4).
[8] Stromberg, F. The origin of ferromagnetism in 57Fe ion-implanted semiconducting 6H-polytype silicon carbide[J]. J Phys Condens Matter, 2006, 18(43): 9881–9990.
[9] SONG B, BAO H, LI H, et al. Magnetic properties of Mn-doped 6H-SiC[J]. Appl Phys Lett, 2009, 94(10): 102508(1–3).
[10] DUIJN-ARNOLD A V, ZONDERVAN R, SCHMIDT J, et al. Electronic structure of the N donor center in 4H-SiC and 6H-SiC[J]. Phys Rev B, 2001, 64(8): 085206(1–17).
[11] WANG Y, LIU Y. Wendle defect-induced magnetism in neutron irradiated 6H-SiC single crystals E, et al. Defect-induced magnetism in SiC: Why the ferromagnetic signal is weak? arXiv preprint arXiv: 1501.01096, 2015.
[12] GARDNER Jason, RAO Mulpuri V. Elevated temperature nitrogen implants in 6H-SiC[J]. J Electron Mater, 1996, 25(5): 885–892.
[13] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865–3868.
[14] YU L, JIN H, LIU D, et al. Investigation of ferromagnetism in Al-doped 4H-SiC by density functional theory[J]. Chem Phys Lett, 2010, 496(46): 276–279.
[15] YANG K S, DAI Y, HUANG B B, et al. Density-functional characterization of antiferromagnetism in oxygen-deficient anatase and rutile TiO2[J]. Phys Rev B, 2010, 81: 033202(1–4).
[16] WANG H X, ZONG Z C, YAN Y. Mechanism of multi-defect induced ferromagnetism in undoped rutile TiO2[J]. J Appl Phys, 2014, 115: 233909(1–5).
[17] PAN F C, ZHAO M W, MEI L M. First-principles prediction of the negatively-charged nitrogen-silicon-vacancy center in cubic silicon carbide[J]. J Appl Phys, 2010, 108: 043917(1–4).
[18] ZHAO M W, PAN F C, MEI L M. Ferromagnetic ordering of silicon vacancies in N-doped silicon carbide[J]. Appl Phys Lett, 2010, 96: 012508(1–3).
[19] 潘凤春, 徐佳楠, 杨花, 等. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究[J]. 物理学报, 2017, 66: 056101(1–7).
PAN Fengchun, XU Jianan, YANG Hua, et al. Acta Phys Sin(in Chinese), 2017, 66: 056101(1–7).
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com