[1] WINTER M, BRODD R. What are batteries, fuel cells, and super capacitors[J]. Chem Rev, 2004, 104(10): 4245–4270.
[2] DUNN B, KAMATH H, TARASCON J. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928–935.
[3] 胡彬. 钛基钠离子电池负极材料制备与性能研究[D]. 上海交通大学, 2014.
[4] 李慧, 吴川, 吴锋, 等. 钠离子电池:储能电池的一种新选择[J]. 化学学报, 2014(1): 21–29.
LI H, WU C, WU F, et al. Acta Chim Sin, 2014(1): 21–29.
[5] ARMAND M, TARASCON J. Building better batteries[J]. Nature, 2008, 451(7179): 652–657.
[6] SONG L, LI X, WANG Z, et al. Finite element analysis and thermal behavior of lithium ion cells during charge-discharge process[J]. J Funct Mater, 2013, 8(44): 1153–1158.
[7] PALACÍN M. Recent advances in rechargeable battery materials: a chemist’s perspective[J]. Chem Soc Rev, 2009, 38(9): 2565–2575.
[8] LU Y, ZHANG S, LI Y, et al. Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries[J]. J Power Sources, 2014, 247: 770–777.
[9] PAN H, HU Y, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy Environ Sci, 2013, 6(8): 2338–2360.
[10] PALOMARES V, CASAS-CABANAS M, CASTILLO-MARTÍNEZ E, et al. Update on Na-based battery materials. A growing research path[J]. Energy Environ Sci, 2013, 6(8): 2312–2337.
[11] 何菡娜, 王海燕, 唐有根, 等. 钠离子电池负极材料[J]. 化学进展, 2014(4): 572–581.
HE H, WANG H, TANG Y, et al. Prog Chem (in Chinese), 2014(4): 572–581.
[12] 金翼, 孙信, 余彦, 等. 钠离子储能电池关键材料[J]. 化学进展, 2014(4): 582–591.
JIN Y, SUN X, YU Y, et al. Prog Chem (in Chinese), 2014(4): 582–591.
[13] 钱江锋, 高学平, 杨汉西. 电化学储钠材料的研究进展[J]. 电化学, 2013(6): 523–529.
QIAN J, GAO X, YANG Hi. J Electrochem (in Chinese), 2013(6): 523–529.
[14] 许婧, 杨德志, 廖小珍, 等. 还原氧化石墨烯/TiO2复合材料在钠离子电池中的电化学性能[J]. 物理化学学报, 2015(5): 913–919.
XU J, YANG D, LIAO X, et al. Acta Phys-Chim Sin (in Chinese), 2015(5): 913–919.
[15] 黄宗令, 王丽平, 牟成旭, 等. 对苯二甲酸镁作为钠离子电池的有机负极材料[J]. 物理化学学报, 2014(10): 1787–1793.
HUANG Z, WANG L, MOU C, et al. Acta Phys-Chim Sin (in Chinese), 2014(10): 1787–1793.
[16] GE P, FOULETIER M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics, 1988, 28: 1172–1175.
[17] STEVENS D, DAHN J. The mechanisms of lithium and sodium insertion in carbon materials[J]. J Electrochem Soc, 2001, 148(8): A803–A811.
[18] CHEVRIER V, CEDER G. Challenges for Na-ion negative electrodes[J]. J Electrochem Soc, 2011, 158(9): A1011–A1014.
[19] WANG Y, CHOU S, LIU H, et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon, 2013, 57: 202–208.
[20] WEN Y, HE K, ZHU Y, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nat Commun, 2014(5): 2003–2016.
[21] 陈军刚. 金属氧化物/氧化石墨烯及其还原产物纳米复合结构的制备与表征研究[D]. 西南科技大学, 2014.
[22] CASIRAGHI C, FERRARI A, ROBERTSON J. Raman spectroscopy of hydrogenated amorphous carbons[J]. J Phys Rev B, 2005, 72(8): 85401–85414.
[23] ACIK M, MATTEVI C, GONG C, et al. The role of intercalated water in multilayered graphene oxide[J]. ACS Nano, 2010, 4(10): 5861–5868.
[24] PONROUCH A, GOÑI A, PALACÍN M. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte[J]. Electrochem Commun, 2013, 27: 85–88.
[25] 杨勇辉, 孙红娟, 彭同江. 石墨烯的氧化还原法制备及结构表征[J]. 无机化学学报, 2010(11): 2083–2090.
YANG Y, SUN H, PENG T, et al. Chin J Inorg Chem (in Chinese), 2010(11): 2083–2090.
[26] 李玉峰. 细鳞片石墨膨胀机理的研究[D]. 西南石油大学, 2006.
[27] TANG K, FU L, WHITE R, et al. Hollow carbon nanospheres with superior rate capability for sodium-ion batteries[J]. Adv Energy Mater, 2012(2): 873–7.
[28] WANG Y, CHOU S, LIU H, et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon, 2013, 57: 202–208.
[29] CAO Y, XIAO L, SUSHKO M, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Lett, 2012, 12(7): 3783–3787.
|