首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
水热法制备WO3纳米阵列及其在钙钛矿太阳电池中的应用
作者:王艳青1 聂林辉1 吴妮2 李龙1 崔振东1 史成武1 2 
单位:1. 合肥工业大学宣城校区化工与食品加工系 安徽 宣城 242000 2.合肥工业大学化学与化工学院 合肥 230009 
关键词:氧化钨 纳米片阵列 纳米树叶阵列 水热法 钙钛矿太阳电池 
分类号:TM914.4
出版年,卷(期):页码:2018,46(5):0-0
DOI:
摘要:
以不同浓度的钨源溶液通过水热法制备了WO3纳米树叶阵列和WO3纳米片阵列,并研究了其形貌、晶相和吸收光谱。基于WO3纳米树叶阵列作为骨架层的钙钛矿太阳电池实现了4.96%的光电转化效率(PCE),且开路电压(Voc)为0.48 V,短路电流密度(Jsc)为19.66 mA?cm–2,填充因子(fF)为0.52。基于WO3纳米片阵列的太阳电池的PCE,Voc,Jsc和fF分别为0.27%,0.14 V,5.96 mA?cm–2,0.32。WO3纳米阵列与空穴传输材料的直接接触增加了电子和空穴的复合,不利于电池的开路电压和填充因子。
基金项目:
基金项目:国家自然科学基金(51602089,51472071);合肥工业大学校博士专项科研资助基金(JZ2014HGBZ0371)和合肥工业大学学术新人提升计划B项目(JZ2017HGTB0230)。
作者简介:
第一作者:王艳青(1985—),男,博士,讲师。
参考文献:
[1] WANG K, SHI Y, DONG Q, et al. Low-temperature and solution-processed amorphous WOx as electron-selective layer for perovskite solar cells[J]. J Phys Chem Lett, 2015, 6(5): 755–759.
[2] WANG F, VALENTIN C D, PACCHIONI G. Rational band gap engineering of WO3 photocatalyst for visible light water splitting[J]. Chem Catal Chem, 2012, 4(4): 476–478.
[3] JIAO Z, WANG J, KE L, et al. Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties[J]. ACS Appl Mater Inter, 2011, 3(2): 229–236.
[4] MEDA L, TOZZOLA G, TACCA A, et al. Photo-electrochemical properties of nanostructured WO3 prepared with different organic dispersing agents[J]. Sol Energ Mat Sol C, 2010, 94(5): 788–796.
[5] CAI G F, TU J P, ZHOU D, et al. The direct growth of a WO3 nanosheet array on a transparent conducting substrate for highly efficient electrochromic and electrocatalytic applications[J]. Cryst Eng Comm, 2014, 16(30): 6866–6872.
[6] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2(8): 591.
[7] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643–647.
[8] SON D Y, IM J H, KIM H S, et al. 11% Efficient perovskite solar cell based on zno nanorods: an effective charge collection system[J]. J Phys Chem C, 2014, 118(30): 16567–16573.
[9] KIM H S, MORA-SERO I, GONZALEZ-PEDRO V, et al. Mechanism of carrier accumulation in perovskite thin-absorber solar cells[J]. Nat Commun, 2013, 4(7): 2242.
[10] LIU H, HUANG Z, WEI S, et al. Nano-structured electron transporting materials for perovskite solar cells[J]. Nanoscale, 2016, 8(12): 6209–6221.
[11] YANG G, TAO H, QIN P, et al. Recent progress in electron transport layers for efficient perovskite solar cells[J]. J Mater Chem A, 2016, 4(11): 3970–3990.
[12] SINGH T, SINGH J, MIYASAKA T. Role of metal oxide electron-transport layer modification on the stability of high performing perovskite solar cells[J]. Chem Sus Chem, 2016, 9(18): 2559–2566.
[13] MAHMOOD K, SWAIN B S, KIRMANI A R, et al. Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material[J]. J Mater Chem A, 2015, 3(17): 9051–9057.
[14] WANG K, SHI Y, LI B, et al. Amorphous inorganic electron-selective layers for efficient perovskite solar cells: feasible strategy towards room-temperature fabrication[J]. Adv Mater, 2016, 28(9): 1891–1897.
[15] WANG K, SHI Y, GAO L, et al. W(Nb)Ox-based efficient flexible perovskite solar cells: From material optimization to working principle[J]. Nano Energy, 2017, 31: 424–431.
[16] HOU Y, QUIROZ C O R, SCHEINER S, et al. Low-Temperature and hysteresis-free electron-transporting layers for efficient, regular, and planar structure perovskite solar cells[J]. Adv Energy Mater, 2015, 5(20): 1501056.
[17] GHENO A, PHAM T T T, BIN C D, et al. Printable WO3 electron transporting layer for perovskite solar cells: Influence on device performance and stability[J]. Sol Energ Mat Sol C, 2017, 161: 347–354.
[18] ZHANG J, SHI C, CHEN J, et al. Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells[J]. J Semicond, 2016, 37(3): 033002.
[19] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316–319.
[20] ZHANG J, SHI C, CHEN J, et al. Preparation of ultra-thin and high-quality WO3 compact layers and comparision of WO3 and TiO2 compact layer thickness in planar perovskite solar cells[J]. J Solid State Chem, 2016, 238: 223–228.
[21] LI N, SHI C, ZHANG Z, et al. 130°C CH3NH3I treatment temperature in vapor-assisted solution process for large grain and full-coverage perovskite thin films[J]. Opt Mater, 2016, 60: 230–234.
[22] MA J, ZHANG J, WANG S, et al. Topochemical preparation of WO3 nanoplates through precursor H2WO4 and their gas-sensing performances[J]. J Phys Chem C, 2011, 115(37): 18157–18163.
[23] ROELOFS K E, BRENNAN T P, DOMINGUEZ J C, et al. Effect of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state CdS quantum dot-sensitized solar cells[J]. J Phys Chem C, 2013, 117(117): 5584–5592.
[24] LI X, DAI S M, ZHU P, et al. Efficient perovskite solar cells depending on TiO2 nanorod arrays[J]. ACS Appl Mater Inter, 2016, 8(33): 21358–21365.
[25] YOU J, YANG Y, HONG Z, et al. Moisture assisted perovskite film growth for high performance solar cells[J]. Appl Phys Lett, 2014, 105(18): 183902.
[26] SUAREZ B, GONZALEZ-PEDRO V, RIPOLLES T S, et al. Recombination study of combined halides (Cl, Br, I) perovskite solar cells[J]. J Phys Chem Lett, 2014, 5(10): 1628–1635.
[27] CHRISTIANS J A, FUNG R C M, KAMAT P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide[J]. J Am Chem Soc, 2014, 136(2): 758–764.
[28] DUALEH A, MOEHL T, TETREAULT N, et al. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells[J]. ACS. Nano, 2014, 8(1): 362–373.
[29] LIU C, QIU Z, MENG W, et al. Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter[J]. Nano Energy, 2015, 12(1): 59–68.
[30] MORA-SERÓ I, BISQUERT J, FABREGAT-SANTIAGO F, et al. Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells[J]. Nano Lett, 2006, 6(4): 640–650.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com