首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
氯化氧铋/多孔钛羟基磷灰石的制备及其对乙醛的催化降解性能

作者:王俊忠1 李心昕1 郭明阳1 马俊森1 王延生1 张广田2 肖凤娟1 
单位:1. 石家庄铁道大学材料科学与工程学院 河北省交通工程重点实验室 石家庄 050043  2. 河北省建筑科学研究院 石家庄 050021 
关键词:氯化氧铋 多孔钛羟基磷灰石 乙醛 光催化降解 
分类号:X511;TQ426
出版年,卷(期):页码:2018,46(5):0-0
DOI:
摘要:
以多孔碳酸钙为模板,采用共沉淀法合成了高比表面积的球形氯化氧铋/多孔钛羟基磷灰石(BiOCl/P-TiHA)复合材料,并对其结构和光吸收性能进行了测定,探讨了BiOCl/P-TiHA复合材料在可见光下对乙醛的催化降解性能、降解路径和反应机理。结果表明:合成的BiOCl/P-TiHA与目标产物结构一致,当BiOCl和TiHA的摩尔比为5:1时,于光照120 min条件下,BiOCl/P-TiHA对乙醛的催化降解效率可达89.6%,降解反应符合一级反应动力学。BiOCl/P-TiHA具有较小的禁带宽度和良好的稳定性,可以多次重复循环利用。
 
 
基金项目:
基金项目:河北省自然科学基金(B2014210014);河北省住房和城乡建设厅科技研究项目(13271302D);河北省重点发展学科项目资助。
作者简介:
第一作者:王俊忠(1992—),男,硕士研究生。
参考文献:
[1] FAN G T, XIE J C, LIU J P, et al. Investigation of indoor environmental quality in urban dwellings with school children in Beijing, China[J]. Indoor Built Environ, 2017(5): 694–716. 
[2] 银爱君, 邓起发. 室内空气污染的来源及控制措施[J]. 北方环境, 2010(3): 102–104. 
YIN Aijun,DENG Qifa. Northern Environ (in Chinese), 2010(3): 102–104. 
[3] 袁健, 刘召敏, 杨慎文, 等. 浅析室内空气污染危害及其预防[J]. 环境科学导刊, 2010(S1): 54–56. 
YUAN Jian, LIU Zhaomin, YANG Shenwen, et al. Environ Sci Surv (in Chinese), 2010(S1): 54–56. 
[4] KIM K H, JAHAN S A, LEE J T. Exposure to formaldehyde and its potential human health hazards[J]. J Environ Sci Health Part C: Environ Carcinogenes Ecotoxicol Rev, 2011, 29 (4): 277–299. 
[5] 胡茂从, 钟顺和. TiO2/羟基磷灰石的结构及其光催化降解醛类的性能[J]. 催化学报, 2006(12): 1144–1148. 
HU Maocong, ZHONG Shunhe. Chin J Catal (in Chinese), 2006(12): 1144–1148. 
[6] 陈昌兵, 陈勇, 刘欣伟, 等. La-TiO2光催化涂料的制备及其降解甲醛效果研究[J]. 涂料工业, 2016(5): 24–27, 32. 
CHEN Changbing, CHEN Yong, LIU Xinwei, et al. Paint Coat Ind (in Chinese), 2016(5): 24–27, 32
[7] YANG C Y, LI F, ZHANG M, et al. Preparation and first-principles study for electronic structures of BiOI/BiOCl composites with highly improved photocatalytic andadsorption performances. [J]. J Mol Catal A-Chem, 2016, 423: 1–11. 
[8] KIMA W J, PRADHANB D, MINC B K, et al. Adsorption/ photocatalytic activity and fundamental natures of BiOCl and BiOClxI1−xprepared in water and ethylene glycol environments, and Ag and Au-doping effects[J]. Appl Catal B: Environ, 2014, 147(8): 711–725. 
[9] JIA X M, CAO J, LIN H L. Transforming type-I to type-II heterostructure photocatalyst via energy band engineering: A case study of I-BiOCl/I-BiOBr[J]. Appl Catal B: Environ, 2017, 204: 505–514. 
[10] XU H Y, HAN X, TAN Q, et al. Crystal-chemistry insight into the photocatalytic activity of BiOClx Br1−x nanoplate solid solutions[J]. Front Mater Sci, 2017, 11(2): 120–129. 
[11] LI Xu, YAN Pengcheng, LI Henan, et al. Metallic Bi self-doping BiOCl composites: Synthesis and enhanced photoelectrochemical performance[J]. Mater Lett, 2017, 196: 225–229. 
[12] SONG Jinling, FAN Qingnan, ZHU Wanghao, et al. Preparation of BiOCl with high speci?c surface area and excellent visible light photocatalytic activity[J]. Mater Lett, 2016, 165: 14–18. 
[13] LI Hao, ZHANG Lizhi. Photocatalytic performance of different exposed crystal facets of BiOCl[J]. Curr Opin Green Sustai. Chem, 2017(6 ): 48–56. 
[14] 魏平玉, 杨青林, 郭林. 卤氧化铋化合物光催化剂[J]. 化学进展, 2009(9): 1734–1741. 
WEI Pingyu, YANG Qinglin, GUO Lin. Prog Chem (in Chinese), 2009(9): 1734–1741. 
[15] YU Xiang, YANG Jinjin, YE Kailiang, et al. Facile one-step synthesis of BiOCl/BiOI heterojunctions with exposed {001} facet for highly enhanced visible light photocatalytic performances[J]. Inorg Chem Commun, 2016, 71: 45–49.
[16] WAKAMURA M, HASHIMOTO K, WATANABE T. Photocatalysis by calciumhydroxyapatite modi?ed with Ti (IV): albumin decomposition and bacterialeffect[J]. Langmuir, 2003, 19: 3428–3431. 
[17] YOSHIDA N, TAKEUCHI M, OKURA T, et al. Super-hydrophobic photocatalytic coatings utilizing apatite-basedphotocatalyst[J]. Thin Solid Films 2006, 502: 108–111. 
[18] HU Anmin., LI Ming, CHANG Chengkang, et al. Preparation and characterization of atitanium-substituted hydroxyapatite photocatalyst[J]. Mol Catal A Chem, 2007, 267: 79–85. 
[19] LI Qian, FENG Xiang, ZHANG Xiao, et al. Potocatalytic degradation of bisphenol A using Ti-substituted hydroxyapatite[J]. Chin J Catal, 2014, 35(1): 90–98. 
[20] WAKAMURA M, TAANAKA H, NAGANUMA Y, et al. Surface structure and visible light photocatalytic activity of titanium-calcium hydroxyapatite modified with Cr (Ⅲ)[J]. Adv Powder Technol, 2011, 22: 498–503. 
[21] QU Zhenping, SUN Yahui, CHEN Dan, et al. Possible sites of copper located on hydroxyapatite structure and theidenti?cation of active site for formaldehyde oxidation[J]. J Mol Catal A-Chem, 2014, 393: 182–190. 
[22] KANDORI K, KURODAY T, WAKAMURA M. Protein adsorption behaviors onto photocatalytic Ti (IV)-doped calcium hydroxyapatite particles [J]. Colloid Surf B-Biointerfaces. 2011, 87: 472–479. 
[23] PASSALIA C, RETAMAR M E M, ALFANO O M, et al. Photocatalytic degradation of formaldehyde in gas phase on TiO2 films: A kinetic study[J]. Int J Chem Eng, 2010, 8(1):47–54. 
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com