[1] KHAZANOV Efim A. Slab-based Faraday isolators and Faraday mirrors for 10-kW average laser power[J]. Appl Opt, 2004, 43(9): 1907?1913.
[2] ZHELEZNOV Dmitry S, STAROBOR Aleksey V, PALASHOV Oleg V, et al. Cryogenic Faraday isolator with a disk-shaped magneto-optical element[J]. Opt Soc Am, 2012, (29)4: 786?792.
[3] KHAZANOV E A. Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers[J]. SPIE, 2003(4968): 115?126.
[4] KAGAN M A, KHAZANOV E A. Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics[J]. Appl Opt, 2004, 43(32): 6030?6039.
[5] YOSHIDA H, TSUBAKIMOTO K, FUJIMOTO Y, et al. Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator[J]. Opt Express, 2011, 19(16): 15181?15187.
[6] YASUHARA R, FURUSE H. Thermally induced depolarization in TGG ceramics[J]. Opt Lett, 2013, 38(10): 1751?1753.
[7] SNETKOV I L, YASUHARA R, STAROBOR A V, et al. TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization[J]. Opt Express, 2014, 22(4): 4144?4151.
[8] STAROBOR A, ZHELEZNOV D, PALASHOV O, et al. Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power[J]. Opt Mater Express, 2014, 4(10): 2127?2132.
[9] YASUHARA R, SNETKOV I, STAROBOR A, et al. Terbium gallium garnet ceramic Faraday rotator for high-power laser application[J]. Opt Lett, 2014, 39(5): 1145?1148.
[10] YASUHARA R, NOZAWA H, YANAGITANI T, et al. Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG[J]. Opt Express, 2013, 21(25): 31443?31452.
[11] FURUSE H, YASUHARA R, HIRAGA K. Thermo-optic properties of ceramic YAG at high temperatures[J]. Opt Mater Express, 2014, 4(9): 1794?1799.
[12] YASUHARA R, SNETKOV I, STAROBOR A V, et al. TGG ceramic-based Faraday isolator for high-energy pulsed lasers with kW average power[C]//Applications of Lasers for Sensing and Free Space Communications. Optical Society of America, 2013: JTh5A. 8.
[13] YASUHARA R, NOZAWA H, YANAGITANI T, et al. Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG[J]. Opt Express, 2013, 21(25): 31443?31452.
[14] YASUHARA R, SNETKOV I, STAROBOR A V, et al. TGG ceramic-based Faraday isolator for high-energy pulsed lasers with kW average power[C]//Applications of Lasers for Sensing and Free Space Communications. Optical Society of America, 2013: JTh5A. 8.
[15] ZHELEZNOV D S, MUKHIN, OLEG I B, et al. Faraday rotators with short magneto-optical elements for 50-kW laser power[J]. IEEE J Quantum Electron, 2007, 43(6): 451?457.
[16] YASUHARA R, TOKITA S, KAWANAKA J, et al. Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics[J]. Opt Express, 2007, 15(18): 11255?11261.
[17] FURUSE H, YASUHARA R, HIRAGA K. Thermo-optic properties of ceramic YAG at high temperatures[J]. Opt Mater Express, 2014, 4(9): 1794?1799.
[18] YASUHARA R, FURUSE H. Thermally induced depolarization in TGG ceramics[J]. Opt Lett, 2013, 38(10): 1751?1753.
[19] KHAZANOVE A, KULAGINO V, YOSHIDA S, et al, Investigation of self-induced depolarization of laser radiation in terbium gallium garnet[J]. IEEE J Quantum Electron, 1999, 35(8): 1116?1122.
|