首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
基于不同溅射方法制备铜锌锡硫薄膜及太阳电池
作者:    李志山 陆熠磊 王书荣 
单位:(云南师范大学 云南省农村能源工程重点实验室 昆明 650500) 
关键词:铜锌锡硫薄膜 共溅射 分步溅射 太阳电池 硫化 
分类号:O614.1
出版年,卷(期):页码:2018,46(7):0-0
DOI:
摘要:

采用共溅射及分步溅射方法在涂钼的钠钙玻璃衬底上分别形成金属预制层,先后在低温及高温下对金属预制层进行合金后硫化,制备了铜锌锡硫(Cu2¬ZnSnS4, CZTS)薄膜。研究了薄膜的晶体结构、表面和截面形貌、元素组分、薄膜中的相纯度及元素的化学状态。结果表明:共溅射预制层得到的CZTS薄膜的表面及截面形貌优于分步溅射预制层得到的CZTS薄膜。用紫外-可见分光光度计与Hall测试系统表征了CZTS薄膜的光电特性,发现在200 ℃退火15 h能有效降低CZTS薄膜的缺陷态密度,增加CZTS薄膜中的载流子迁移率和扩散系数。研究结果表明,采用共溅射制备CZTS薄膜太阳电池性能优于分步溅射法,且经过退火处理的CZTS薄膜制备的电池特性均得到有效提高。基于分步溅射法制备的CZTS吸收层制备的电池开路电压为722 mV,短路电流密度为11.2 mA/cm2,最高转换效率为3.22%;基于共溅射法制备的CZTS吸收层制备的电池开路电压为637 mV,短路电流密为15.0 mA/cm2,最高转换效率为3.88%。

基金项目:
作者简介:
参考文献:
[1] KATAGIRI H, JIMBO K, YAMADA S, et al. Enhanced conversion efficiencies of Cu2ZnSnS4 based thin film solar cells by using preferential etching technique[J]. Appl Phys Express, 2008, 1(4): 041201. 
[2] FUKANO T, TAJIMA S, ITO T. Enhancement of conversion efficiency of Cu2ZnSnS4 Thin film solar cells by improvement of sulfurization conditions[J]. Appl Phys Express, 2013, 6(6): 12?12. 
[3] LI J, ZHANG Y, ZHAO W, et al. Solar cells: A temporary barrier effect of the alloy layer during selenization: tailoring the thickness of MoSe2 for efficient Cu2ZnSnSe4 solar cells[J]. Adv Energy Mater, 2015, 5(9): 1402178.
[4] SHIN B, GUNAWAN O, ZHU Y, et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber[J]. Prog Photovoltaics: Res Appl, 2013, 21(1): 72–76. 
[5] YUN S L, GERSHON T, GUNAWAN O, et al. Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length[J]. Adv Energy Mater, 2015, 5(7): 1401372. 
[6] TODOROV T K, REUTER K B, MITZI D B. High-efficiency solar cell with earth-abundant liquid-processed absorber[J]. Adv Mater, 2010, 22(20): 156?159. 
[7] TODOROV T, GUNAWAN O, CHEY S J, et al. Progress towards marketable earth-abundant chalcogenide solar cells[J]. Thin Solid Films, 2011, 519(519): 7378?7381. 
[8] TODOROV T K, TANG J, BAG S, et al. Beyond 11% efficiency: characteristics of state-of-the-Art Cu2ZnSn(S, Se)4 solar cells[J]. Adv Energy Mater, 2013, 3(1): 34–38. 
[9] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Adv Energy Mater, 2014, 4(7): 403?410. 
[10] HSU W C, REPINS I, BEALl C, et al. Growth mechanisms of co-evaporated kesterite: A comparison of Cu-rich and Zn-rich composition paths[J]. Prog Photovoltaics: Res Appl, 2014, 22(1): 35–43. 
[11] AHMED S, REUTER K B, GUNAWAN O, et al. A high efficiency electrodeposited Cu2ZnSnS4, solar cell[J]. Adv Energy Mater, 2012, 2(2): 253–259. 
[12] FENG J, IKEDA S, HARADA T, et al. Pure sulfide Cu2ZnSnS4 thin film solar cells fabricated by preheating an electrodeposited metallic stack[J]. Adv Energy Mater, 2014, 4(7): 403–410. 
[13] JIANG F, IKEDA S, TANG Z, et al. Impact of alloying duration of an electrodeposited Cu/Sn/Zn metallic stack on properties of Cu2ZnSnS4 absorbers for thin-film solar cells[J]. Prog Photovoltaics: Res Appl, 2015, 23(12): 1884–1895. 
[14] VAUCHE L, RISCH L, SÁNCHEZ Y, et al. 8.2% pure selenide kesterite thin-film solar cells from large-area electrodeposited precursors[J]. Prog Photovoltaics: Res Appl, 2016, 24(1): 38–51.
[15] 蒋志, 李志山, 杨敏, 等. 单质靶溅射制备CZTS 薄膜及太阳电池[J]. 人工晶体学报, 2015, 44(12): 3582–3587.
a) JIANG Zhi, LI Zhishan, YANG Min, et al. J Synth Cryst (in Chinese), 2015, 44(12): 3582–3587.
[16] KHALIL M I, BERNASCONI R, MAGAGNIN L. CZTS layers for solar cells by an electrodeposition-annealing route[J]. Electrochim Acta, 2014, 145: 154–158. 
[17] GURAV K V, PAWAR S M, SHIN S W, et al. Electrosynthesis of CZTS films by sulfurization of CZT precursor: Effect of soft annealing treatment[J]. Appl Surf Sci, 2013, 283(10): 74–80. 
[18] CHEN G, YUAN C, LIU J, et al. Low cost preparation of Cu2ZnSnS4 and Cu2ZnSn (SxSe1− x)4 from binary sulfide nanoparticles for solar cell application[J]. J Power Sources, 2014, 262: 201–206. 
[19] GORDILLO G, CALDERÓN C, BARTOLO-PÉREZ P. XPS analysis and structural and morphological characterization of Cu2ZnSnS4, thin films grown by sequential evaporation[J]. Appl Surf Sci, 2014, 305(16): 506–514. 
[20] SCRAGG J J, KUBART T, WATJEN J T, et al. Effects of back instability on Cu2ZnSnS4 devices and processes[J]. Chem Mater, 2013, 25(9): 3162–3171. 
[21] LEITAO J P, SANTOS N M, FERNANDES P A, et al. Study of optical and structural of Cu2ZnSnS4 thin films[J]. Thin Solid Films, 2011, 519(59): 7390–7393. 
[22] RIHA S C. PARKINSON B A, PRIETO A L. Solution-based synthesis and characterization of Cu2ZnSnS4 Nanocrystals[J]. Am Chem Soc, 2009, 131 (34): 12054−12055. 
[23] SHIN S W, PAWAR S M, PARK C Y, et al. Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films[J]. Sol Energy Mater Sol Cells, 2011, 95(11): 3202–3206. 
[24] FERNANDES P A, SALOMÉ1 P M P, CUNHA A F D. Study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors[J]. J Phys D: Appl Phys, 2010, 43 (21): 215403. 
[25] JIE G, JIANG J, YANG P, et al. A 5.5% efficient co-electrodeposited ZnO /CdS/Cu2ZnSnS4/Mo thin film solar cell[J]. Sol Energy Mater Sol Cells, 2014, 125 (4): 20–26. 
[26] MKAWI E M, IBRAHIM K, ALI M K M, et al. Influence of triangle wave pulse on the properties of Cu2ZnSnS4 thin films prepared by single step electrodeposition[J]. Sol Energy Mater Sol Cells, 2014, 130: 91–98. 
[27] 郝华丽, 刘文富. 太阳能电池效率的影响因素分析[J]. 现代电子技术, 2015(12): 156–158.
a) HAO Huali, LIU Wenfu. J Modern Electron Technol (in Chinese), 2015(12): 156–158. 
[28] DONG H, SCHNABEL T, AHLSWEDE E, et al. Polyol-mediated synthesis of Cu2ZnSn(S, Se)4, kesterite nanoparticles and their use in thin-film solar cells[J]. Solid State Sci, 2014, 29(19): 52–57. 
[29] HOMARE Hiroi, NORIYUKI Sakai, TAKUYA Kato, et al. Buffer/absorber interface study on Cu2ZnSnS4 and Cu2ZnSnSe4 based solar cells: band alignment and its impact on the solar cell performance[C]// 2013 IEEE 39th Photovoltaic Specialists Conference. Tampa Florida, US, June 16-21, 2013: 0863–0867. 
[30] SINTON R A, CUEVAS A. Contactless determination of current-voltage characteristics and minority-carrier lifetime in semiconductors from quasisteady-state photoconductance date[J]. Appl Phys Lett, 1996, 69(17): 2510–2512. 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com