首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
纳米二氧化硅对混凝土界面过渡区的改性机制及其多尺度模型
作者:  王先志 
单位:(同济大学先进土木工程材料教育部重点实验室 上海201804) 
关键词:混凝土 界面过渡区 纳米二氧化硅 纳米压痕 
分类号:TU502
出版年,卷(期):页码:2018,46(8):1053-1058
DOI:
摘要:

从宏观和微观尺度上研究了纳米SiO2改性对早龄期混凝土中界面过渡区(ITZ)力学行为的影响。测试了混凝土的强度及弹性模量,采用纳米压痕技术并结合统计手段对ITZ进行了表征。同时,从2个尺度层面分别建立了模型进行分析。结果表明:纳米SiO2的掺入有效提高了早龄期混凝土的综合力学性能,并主要提高了ITZ的力学性能,使ITZ与浆体本体的模量比从50%提升到80%。纳米SiO2改性机制以加速水化反应为主,在早期生成大量水化产物,尤其是低密度水化硅酸钙凝胶,进而填充微孔,改善ITZ的微观组织结构。

基金项目:
作者简介:
参考文献:
[1] SCRIVENER K L, NEMATI K M. The percolation of pore space in the cement paste/aggregate interfacial zone of concrete[J]. Cem Concr Res, 1996, 26(1): 35–40.
[2] SCRIVENER K L, CRUMBIE A K, LAUGESEN P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete[J]. Interface Sci, 2004, 12(4): 411–421.
[3] 陈惠苏, 孙伟, STROEVEN P. 水泥基复合材料集料与浆体界面研究综述(一): 实验技术[J]. 硅酸盐学报, 2004, 32(1): 63–69.
CHEN H, SUN W, STROEVEN P. J Chin Ceram Soc, 2004, 32(1): 63–69.
[4] 陈惠苏, 孙伟, STROEVEN P. 水泥基复合材料集料与浆体界面研究综述(二): 界面微观结构的形成、劣化机理及其影响因素[J]. 硅酸盐学报, 2004, 32(1): 70–79.
CHEN H, SUN W, STROEVEN P. J Chin Ceram Soc, 2004, 32(1): 70–79.
[5] KURODA M, WATANABE T, TERASHI N. Increase of bond strength at interfacial transition zone by the use of fly ash[J]. Cem Concr Res, 2000, 30(2): 253–258.
[6] POON C S, LAM L, WONG Y L. Effects of fly ash and silica fume on interfacial porosity of concrete[J]. J Mater Civ Eng, 1999, 11(3): 197–205.
[7] 马一平. 提高水泥石-集料界面粘结强度的研究[J].建筑材料学报, 1999, 2(1): 29–32.
MA Yiping.J Build Mater, 1999, 2(1): 29–32.
[8] MINDESS S, YOUNG J F, DARWIN D, Concrete[M]. 2003.
[9] PALLA R, KARADE S R, MISHRA G, et al. High strength sustainable concrete using silica nanoparticles[J].Constr Build Mater, 2017, 138(5): 285–295.
[10] RUPASINGHE M, NICOLAS R S, MENDIS P, et al. Investigation of strength and hydration characteristics in nano-silica incorporated cement paste[J]. Cem Concr Compos, 2017, 80(7): 17–30.
[11] WU Z M, KHAYAT K H, SHI C J. Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete[J]. Cem Concr Res, 2017, 95(5): 247–256.
[12] KAWASHIMA S, HOU P, CORR D J, et al. Modification of cement-based materials with nanoparticles[J]. Cem Concr Compos, 2013, 36(2): 8–15.
[13] SANCHEZ F, SOBOLEV K. Nanotechnology in concrete – A review[J]. Constr Build Mater, 2010, 24(11): 2060–2071.
[14] SAID A M, ZEIDAN M S, BASSUONI M T, et al. Properties of concrete incorporating nano-silica[J]. Constr Build Mater, 2012, 36(11): 838–844.
[15] ZHANG M H, ISLAM J. Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag[J]. Constr Build Mater, 2012, 29(4): 573–580.
[16] ZHANG M H, ISLAM J, PEETHAMPARAN S. Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag[J]. Cem Concr Compos, 2012, 34(5): 650–662.
[17] CHEN H, ZHU Z, LIU L, et al. Aggregate shape effect on the overestimation of ITZ thickness: Quantitative analysis of Platonic particles[J]. Powder Technol, 2016, 289(2): 1–17.
[18] MILLER M, BOBKO C, VANDAMME M, et al. Surface roughness criteria for cement paste nanoindentation[J]. Cem Concr Res, 2008, 38(4): 467–476.
[19] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. J Mater Res, 1992, 7(6): 1564–1583.
[20] COHEN M D, LEE T-F F, GOLDMAN A. A Method for Estimating the Dynamic Moduli of Cement Paste-Aggregate Interfacial Zones in Mortar[J]. MRS Online Proceedings Library Archive, 1994, 370(1): 407–412.
[21] GARBOCZI E J, SNYDER K A, DOUGLAS J F, et al. Geometrical Percolation-Threshold of Overlapping Ellipsoids[J]. Phys Rev E, 1995, 52(1): 819–828.
[22] CONSTANTINIDES G, ULM F J. The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling[J]. Cem Concr Res, 2004, 34(1): 67–80.
[23] SORELLI L, CONSTANTINIDES G, ULM F J, et al. The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques[J]. Cem Concr Res, 2008, 38(12): 1447–1456. 
348–356.
[18] SCRIVENER K L. Backscattered electron imaging of cementitious microstructures: understanding and quantification[J]. Cem Concr Comp, 2004, 26(8): 935–945. 
[19] KOCABA V. Development and evaluation of methods to follow microstructural development of cementitious systems including slags[D]. Thesis EPFL No. 4523, Lausanne, Switzerland, 2009.
[20] LAMBERET S. Durability of ternary binders based on Portland cement, calcium aluminate cement and calcium sulfate[D]. Lausanne, EcolePolytechniqueFédérale de Lausanne, 2005.
[21] JENNINGS H M. Refinements to colloid model of CSH in cement: CM-II[J].Cem Concr Res, 2008, 38(3): 275–289.
[22] GRUSKOVNJAK A, LOTHENBACH B, HOLZER L, et al. Hydration of alkali-activated slag: comparison with ordinary Portland cement[J]. Adv Cem Res, 2006, 18(3): 119–128.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com