[1] LIU Q F, LI L Y, EASTERBROOK D, et al. Multi-phase modelling of ionic transport in concrete when subjected to an externally applied electric field[J]. Eng Struct, 2012, 42: 201–213.
[2] XIA J, LI L Y. Numerical simulation of ionic transport in cement paste under the action of externally applied electric field[J]. Constr Build Mater, 2013, 39: 51–59.
[3] JENSEN M M, JOHANNESSON B, GEIKER M R. Framework for reactive mass transport: Phase change modeling of concrete by a coupled mass transport and chemical equilibrium model[J]. Comput Mater Sci, 2014, 92: 213–223.
[4] LIU Q F, EASTERBROOK D, YANG J, et al. A three-phase, multi-component ionic transport model for simulation of chloride penetration in concrete[J]. Eng Struct, 2015, 86: 122–133.
[5] CARÉ S, HERVÉ E. Application of a n-phase model to the diffusion coefficient of chloride in mortar[J]. Transport in Porous Media, 2004, 56(2): 119–135.
[6] SAMSON E, MARCHAND J, SNYDER K A, et al. Modeling ion and fluid transport in unsaturated cement systems in isothermal conditions[J]. Cem Concr Res, 2005, 35: 141–153.
[7] 金伟良, 张奕, 卢振勇. 非饱和状态下氯离子在混凝土中的渗透机理及计算模型[J]. 硅酸盐学报, 2008, 36(10): 1362–1369.
JIN Weiliang, ZHANG Yi, LU Zhenyong. J Chin Ceram Soc, 2008, 36(10): 1362–1369.
[8] ZHENG J J, WONG H S, BUENFELD N R. Assessing the influence of ITZ on the steady-state chloride diffusivity of concrete using a numerical model[J]. Cem Concr Res, 2009, 39: 805–813.
[9] 李春秋, 李克非. 干湿交替下表层混凝土中氯离子传输: 原理、试验和模拟[J]. 硅酸盐学报, 2010, 38(4): 1362–1369.
LI Chunqiu, LI Kefei. J Chin Ceram Soc, 2010, 38(4): 1362–1369.
[10] 孙国文, 孙伟, 张云升, 等. 骨料对氯离子在水泥基复合材料中扩散系数的影响[J]. 硅酸盐学报, 2011, 39(4): 662–669.
SUN Guowei, SUN Wei, ZHANG Yunsheng, et al. J Chin Ceram Soc, 2011, 39(4): 662–669.
[11] ZHENG J J, ZHOU X Z, WU Y W, et al. A numerical method for the chloride diffusivity in concrete with aggregate shape effect[J]. Constr Build Mater, 2012, 31: 151–156.
[12] 应敬伟, 肖建庄. 模型再生混凝土氯离子非线性扩散细观仿真[J].建筑材料学报, 2013, 16(5): 863–868.
YING J, XIAO J. J Build Mater(in Chinese), 2013, 16(5): 863–868.
[13] ABYANEH S D, WONG H S, BUENFELD N R. Computational investigation of capillary absorption in concrete using a three-dimensional mesoscale approach[J]. Comput Mater Sci, 2014, 87: 54–64.
[14] 高云, 蒋金洋, 吴凯. 非饱和硬化水泥浆氯离子扩散性能的数值模拟[J]. 建筑材料学报, 2016, 19(6): 1057–1061.
GAO Yun, JIANG Jinyang, WU Kai. J Build Mater (in Chinese), 2016, 19(6): 1057–1061.
[15] AASHTO T 277, Standard Method of Test for Rapid Determination of the Chloride Permeability of Concrete[S]. American Association of States Highway and Transportation Officials, Washington, 1983.
[16] NT-Build 492. Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments[S]. Nordtest Method, 1999.
[17] 中华人民共和国住房和城乡建设部. GB/T 50082普通混凝土长期性能和耐久性能试验方法标准[S]. 建筑工业出版社, 2009.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB/T 50082-2009 Introduction of revised standard for test methods of long-term performance and durability of ordinary concrete[S]. Beijing: China Architecture Press, 2009.
[18] LANKARD D R, SLATTER J E, HOLDEN W A, et al. Neutralization of chloride in concrete[R]. FHWA Report No. FHWA-RD-76-6, Battelle Columbus Laboratories, 1975.
[19] 胡少伟, 朱雅仙, 游日, 等. 外加电场作用下氯离子在钢筋混凝土结构中的扩散模拟[J]. 水运工程, 2010, 444(8): 7–11.
HU Shaowei, ZHU Yaxian, YOU Ri, et al. Port Waterway Eng (in Chinese), 2010, 444(8): 7–11.
[20] 郑靓, 韦江雄, 余其俊, 等. 电化学除盐中混凝土内氯离子的迁移特征研究[J]. 武汉理工大学学报, 2011, 33(2): 42–45.
ZHENG Liang, WEI Jiangxiong, YU Qijiu, et al. J Wuhan Univ Technol (in Chinese), 2011, 33(2): 42–45.
[21] 许文祥, 陈惠苏. 集料形状和尺寸对混凝土边界效应的影响[J]. 硅酸盐学报, 2011, 39(9): 1498–1504.
XU Wenxiang, CHEN Huisu. J Chin Ceram Soc, 2011, 39(9): 1498–1504.
[22] ABYANEH S D, WONG H S, BUENFELD N R. Modelling the diffusivity of mortar and concrete using a three-dimensional mesostructure with several aggregate shapes[J]. Comput Mater Sci, 2013, 78: 63–73.
[23] 金浏, 杜修力, 李悦. 氯离子在饱和混凝土裂缝中的扩散系数分 析[J]. 工程力学, 2016, 33(5): 50-56, 73.
JIN Liu, DU Xiuli, LI Yue. Eng Mech(in Chinese), 2016, 33(5): 50-56, 73.
[24] ZHENG J J, ZHOU X Z, WU Y W, et al. Random-walk algorithm for chloride diffusivity of concrete with aggregate shape effect[J]. J Mater Civil Eng, 2016, 28(12): 04016153.
[25] LIU Q F, EASTERBROOK D, LI L Y, et al. Prediction of chloride diffusion coefficients using multi-phase models[J]. Mag Concr Res, 2017, 69: 134–144.
[26] HU Z, MAO LX, XIA J, et al. Five-phase modelling for effective diffusion coefficient of chlorides in recycled concrete[J]. Mag Concr Res, 2018, 70: 583–594.
[27] JIANG W Q, SHEN X H, XIA J, et al. A numerical study on chloride diffusion in freeze-thaw affected concrete[J]. Constr Build Mater, 2018, 179: 553–565.
[28] FENG GL, LI LY, KIM B, et al. Multiphase modelling of ionic transport in cementitious materials with surface charges[J]. Comput Mater Sci, 2016, 111: 339–349.
[29] TANG L, NILSSON L O. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cem Concr Res, 1993, 23: 247–253.
[30] GENG J, EASTERBROOK D, LIU Q F, et al. Effect of carbonation on release of bound chlorides in chloride-contaminated concrete[J]. Mag Concr Res, 2016, 68: 353–363.
[31] BENTZ D P, GARBOCZI E J, Lu Y, et al. Modeling of the influence of transverse cracking on chloride penetration into concrete[J]. Cem Concr Compos, 2013, 38: 65–74.
[32] JOHANNESSON B, Comparison between the gauss' law method and the zero current method to calculate multi-species ionic diffusion in saturated uncharged porous materials[J]. Comput Geotech, 2010, 37(5): 667–677.
[33] MIYANDEHI BM, FEIZBAKHSH A, YAZDI MA, et al. Performance and properties of mortar mixed with nano-CuO and rice husk ash[J]. Cem Concr Compos, 2016, 74: 225–235.
|