首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
MnO2改性Li3V2(PO4)3/C正极材料的电化学性能
作者: 虹1 郭瑞松2 孙丹丹2 王宝玉2 淘红波3 
单位:(1. 贵州广播电视大学 贵阳 550004 2. 天津大学材料学院 天津 300072 3. 贵州建设职业技术学院 贵阳 551400) 
关键词:正极材料 磷酸钒锂 二氧化锰包覆 锂离子电池 
分类号:TM911
出版年,卷(期):页码:2018,46(8):1162-1168
DOI:
摘要:
通过改良的溶胶–凝胶法(pH=4)制备Li3V2(PO4)3/C正极材料,然后通过聚乙烯醇(PVA)辅助的悬浮液包覆法利用不同含量的无定形MnO2对其进行包覆改性,MnO2的包覆量分别为0%、2%、3%和4% (质量分数)。扫描电子显微镜显示添加适量MnO2,样品的晶粒尺寸变小且形成片层状形貌。电化学测试表明,包覆MnO2后的电极材料性能明显好于未包覆样品,且倍率越高,改善性能越明显,当引入3%的MnO2,正极材料具有最佳的电化学性能。该样品在0.5C倍率下室温首次放电比容量为144.4 mA·h/g,在0.1~5.0 C倍率下进行60个循环后的放电比容量为94.7 mA·h/g (容量保留率56.7%),电荷转移电阻仅为18.9 Ω。
基金项目:
作者简介:
参考文献:
[1] 黄学杰. 锂离子电池及相关材料进展[J]. 中国材料进展, 2010, 29(8): 46–52. 
HUANG Xuejie. Mater China (in Chinese), 2010, 29(8): 46–52.
[2] YANG Y, GONG Z L, WU X B, et al. Recent progress in several cathode materials for Li-ion batteries[J]. Chin Sci Bull (in Chinese), 2012, 57(27): 2570–2586.
[3] 刘伶, 张乃庆, 孙克宁, 等. 锂离子电池安全性能影响因素分析[J]. 稀有金属材料与工程, 2010, 395: 936–940.
LIU Ling, ZHANG Naiqing, SUN Kening, et al. Rare Metal Mater Eng (in Chinese), 2010, 395: 936–940.
[4] 莫名月, 陈红雨. 离子电池隔膜的研究进展[J]. 电源技术, 2011, 135(11): 1438–1466.
MO Mingyue, CHEN Hongyu. Chin J Power Sources (in Chinese), 2011, 135(11): 1438–1466.
[5] 李月姣, 洪亮, 吴锋. 动力锂离子电池正极材料磷酸钒锂制备方法[J]. 化学进展, 2011, 24(01):47–53.
LI Yuejiao, HONG Liang, WU Feng. Progress Chem (in Chinese), 2011, 24(01): 47–53.
[6] ZHANG L L, LIANG G, PENG G, et al. Evolution of electrochemical performance in Li3V2(PO4)3/C composites caused by cation incorporation[J]. Electrochim Acta, 2013, 108: 182–190.
[7] ZHANG R, ZHANG Y, ZHU K, et al. Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries [J]. ACS Appl Mater Interfaces, 2014, 6(15): 12523–12530.
[8] ZHOU Y, GU C D, ZHOU J P, et al. Effect of carbon coating on low temperature electrochemical performance of LiFePO4/C by using polystyrene sphere as carbon source[J]. Electrochim Acta, 2011, 56(14): 5054–5059.
[9] SU F Y, YOU C, HE Y B, et al. Flexible and planar graphene conductive additives for lithium-ion batteries[J]. J Mater Chem, 2010, 20(43): 9644–9650.
[10] HAN H, QIU F, LIU Z, et al. ZrO2-coated Li3V2(PO4)3/C nanocomposite: A high-voltage cathode for rechargeable lithium-ion batteries with remarkable cycling performance[J]. Ceram Inter, 2015, 41(7): 8779–8784.
[11] OH R G, HONG J E, YANG W G, et al. Effects of Al2O3 and AlF3 coating on the electrochemical performance of Li3V2(PO4)3/C cathode material in lithium ion batteries[J]. Solid State Ionics, 2015, 283: 131–136.
[12] ZHAI J, ZHAO M, WANG D, et al. Effect of MgO nanolayer coated on Li3V2(PO4)3/C cathode material for lithium-ion battery[J]. J Alloy Compd, 2010, 502(2): 401–406.
[13] LAI C, WEI J, WANG Z, et al. Li3V2(PO4)3/(SiO2+C) composite with better stability and electrochemical properties for lithium-ion batteries [J]. Solid State Ionics, 2015, 272: 121–126.
[14] YANG Z, HUANG C, KE R, et al. Effects of MnO nanolayer coating on Li3V2(PO4)3/C cathode material for lithium-ion batteries[J]. Mater Chem Phys, 2015, 151: 259–266.
[15] ZHANG L, WANG X L, XIANG J Y, et al. Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag+C) composite cathode[J]. J Power Sources, 2010, 195(15): 5057–5061.
[16] ZHOU J, SUN X, WANG K. Preparation of high-voltage Li3V2(PO4)3 co-coated by carbon and Li7La3Zr2O12 as a stable cathode for lithium-ion batteries[J]. Ceram Int, 2016, 42(8): 10228–10236.
[17] Wu C, Guo R, Cai G, et al. Ti3SiC2 modified Li3V2(PO4)3/C cathode materials with simultaneous improvement of electronic and ionic conductivities for lithium ion batteries[J]. J Power Sources, 2016, 306: 779–790.
[18] YANG Y, GUO R, CAI G, et al. Preparation and electrochemical properties of ceria coated Li3V2(PO4)3/C cathode materials for lithium-ion batteries[J]. J Electrochem Soc, 2014, 161(14): A2153–A2159.
[19] LI H, WEI Y, ZHAO Y, et al. Simple one-pot synthesis of hexagonal ZnO nanoplates as anode material for lithium-ion batteries[J]. J Nanomater, 2016, 2016: 17.
[20] ZHANG R, YANG X, GAO Y, et al. In-situ preparation of Li3V2(PO4)3/C and carbon nanofibers hierarchical cathode by the chemical vapor deposition reaction[J]. Electrochim Acta, 2016, 188: 254–261.
[21] LIANG S, HU J, ZHANG Y, et al. Facile synthesis of sandwich-structured Li3V2(PO4)3/ carbon composite as cathodes for high performance lithium-ion batteries[J]. J Alloy Compd, 2016, 683: 178–185.
[22] JIN Y, XU Y, SUN X, et al. Electrochemically active MnO2 coated Li1.2Ni0.18Co0.04Mn0.58O2 cathode with highly improved initial coulombic efficiency[J]. Appl Surface Sci, 2016, 384: 125–134.
[23] TAGUCHI N, AKITA T, TATSUMI K, et al. Characterization of MgO-coated-LiCoO2 particles by analytical transmission electron microscopy[J]. J Power Sources, 2016, 328: 161–166.
[24] 王莉, 赵吉诗, 何向明, 等. 电化学阻抗技术在锂离子电池研究中的应用[J]. 电源技术, 2011, 35(4): 374–377.
WANG Li, ZHAO Jishi, HE X M, et al. Chin J Power Sources (in Chinese), 2011, 35(4): 374–377.
[25] CAO J, QU Y, GUO R. La0.6Sr0.4CoO3-? modified LiFePO4/C composite cathodes with improved electrochemical performances[J]. Electrochim Acta, 2012, 67: 152–158.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com