[1] KUTNJAK Z. Electrocaloric Effect: Theory, Measurements, and
Applications[M]. Wiley Encyclopedia of Electrical and Electronics
Engineering, 2015: 1–19.
[2] VALANT M. Electrocaloric materials for future solid–state
refrigeration technologies[J]. Progr Mater Sci, 2012, 57(6): 980–1009.
[3] 鲁圣国, 唐新桂, 伍尚华, 等. 铁电材料中的大电卡效应[J]. 无机
材料学报. 2014(1): 6–12.
LU Shengguo, TANG Xingui, WU Shanghua, et al. J Inorg Mater (in
Chinese), 2014(1): 6–12.
[4] LINES M E, GLASS A M. Principles and applications of ferroelectrics
and related materials[M]. New York: Oxford University Press, 1977.
[5] MITSU T, TATSUZAKI I. Introduction to the physics of
ferroelectricity[M]. London: Gordon and Breaeh, 1976.
[6] KOBECO P, KURTCHATOV J. Dielectric properties of Rochelle salt
crystal[J]. Z Phys, 1930, 66: 192–205.
[7] Wiseman G G, Kuebler J K. Electrocaloric effect in ferroelectric
Rochelle salt[J]. Phys Rev, 1963, 131(5): 2023–2027.
[8] POHL R O, TAYLO V L. Electrocaloric effect in doped alkali
halides[J]. Phys Rev Lett, 1968, 178(3): 1431–1436.
[9] SHEPERD I, FEHER G. Cooling by the adiabatic depolarization of
OH–molecules in KCL[J]. Phys Rev Lett, 1965, 15(5): 194–198.
[10] SHEBANOV L, BORMAN K. On lead-scandium Tantalate solid
solutions with high electrocaloric effect[J]. Ferroelectrics, 1992, 127:
1143–1148.
[11] MISCHENKO A S, ZHANG Q, SCOTT J F, et al. Giant electrocaloric
effect in thin–film PbZr0. 95Ti0. 05O3[J]. Science, 2006, 311(5765):
1270–1271.
[12] NEESE B, CHU B J, Lu S G, et al. Large Electrocaloric Effect in
Ferroelectric Polymers Near Room Temperature[J]. Science, 2008:
821–823.
[13] COLE M W, NGO E, HIRSCH S, et al. The fabrication and material
properties of compositionally multilayered Ba1–xSrxTiO3 thin films for
realization of temperature insensitive tunable phase shifter devices[J]. J
Appl Phys, 2007, 102: 034104.
[14] ZHOU L Q, VILARINHO P M, BAPTISTA J L. Dependence of the
structural and dielectric properties of Ba1–xSrxTiO3 ceramic solid
solutions on raw material processing[J]. J Eur Ceram Soc, 1999, 99:
2015–2020.
[15] 简晓东, 路标, 李丹丹, 等. BaZr0.2Ti0.8O3无铅厚膜陶瓷的电卡效
应[J]. 硅酸盐学报. 2017, 45(3): 333–338.
JIAN Xiaodong,LU Biao,LI Dandan,et al.J Chin Ceram Soc.2017,
45(3): 333–338.
[16] REHRIG P W, PARK S E, TROLIER–MCKINSTRY S, et al.
Piezoelectric properties of zirconium-doped barium titanate single
crystals grown by templated grain growth[J]. J Appl Phys, 1999, 86:
1657.
[17] HENNINGS D, SCHNELL A, SIMON G J. Diffuse ferroelectric phase
transition in Ba(Ti1−yZry)O3 ceramics[J]. J Am Ceram Soc, 1982, 65:
539.
[18] ANWAR S, SAGDEOPR, LALLA N P. Ferroelectric relaxor behavior
in hafnium doped barium–titanate ceramic[J]. Solid State Commun,
2006, 138: 331–336.
[19] TIAN H Y, WANG Y, MIAO J, et al. Preparation and characterization
of hafnium doped barium titanate ceramics[J]. J Alloy Compd, 2007,
431: 197–202.
[20] PAYNE W H, TENNERY V J. Dielectric and structural investigations
of the system BaTiO3–BaHfO3[J]. J Am Ceram Soc, 1965: 413–417.
[21] ANG C, JING Z, YU Z. Ferroelectric relaxor Ba(Ti, Ce)O3[J]. J
Phys–Conden Mat , 2002, 14: 8901–8912.
[22] CURECHERIU L P, DELUCA M, MOCANU Z V, et al. Investigation
of the ferroelectric-relaxor crossover in Ce-doped BaTiO3 ceramics by
impedance spectroscopy and Raman study[J]. Phase transit, 2013,
86(7): 703–714.
[23] LU S G, XU Z K, CHEN H. Tunability and relaxor properties of
[24] HORCHIDAN N, IANCULESCU A C, CURECHERIU L P, et al.
Preparation and characterization of barium titanate stannate solid
solutions[J]. J Alloys Compd, 2011, 509(14): 4731–4737.
[25] WEI X, FENG Y J, YAO X. Dielectric relaxation behavior in barium
stannate titanate ferroelectric ceramics with diffused phase transition[J].
Appl Phys Lett, 2003, 83: 2031–2033.
[26] HORCHIDAN N, IANCULESCU A C, VASILESCU C A, et al.
Multiscale study of ferroelectric-relaxor crossover in BaSnxTi1–xO3
ceramics[J]. J Eur Ceram Soc, 2014, 34(15): 3661–3674.
[27] LUO Z D, ZHANG D W, LIU Y et al. Enhanced electrocaloric effect
in lead-free BaTi1–xSnxO3 ceramics near room temperature[J]. Appl
Phys Lett, 2014, 105: 102904.
[28] JIN L, LI F, ZHANG S J. Decoding the fingerprint of ferroelectric
loops: comprehension of the material properties and structures[J]. J
Am Ceram Soc, 2014, 97(1): 1–27.
[29] LU S G, CAI Z H, OUYANG Y X, et al. Electrical field dependence of
electrocaloric effect in relaxor ferroelectrics[J]. Ceram Inter, 2015, 41:
S15–S18.
[30] LU S G, RO?I? B, ZHANG Q M, et al. Electrocaloric effect in
ferroelectric polymers[J]. Appl Phys A, 2012, 107(3): 559–566.
[31] Morimoto K, Uematsu A, Sawai S, et al. Simultaneous Measurement
of specific heat capacity, thermal conductivity and thermal diffusivity
of ferroelectric Ba(Ti1−x, Snx)O3 ceramics by thermal radiation
calorimetry[J]. Jpn J Appl Phys, 2002, 41: 6943–6947.
[32] BAI Y, HAN X, DING K, et al. Combined effects of diffuse phase
transition and microstructure on the electrocaloric effect in
Ba1–xSrxTiO3 ceramics[J]. Appl Phys Lett, 2013, 103: 162902.
[33] LI X, QIAN X S, GU H, et al. Giant electrocaloric effect in
ferroelectric poly(vinylidenefluoride–trifluoroethylene) copolymers
near a first–order ferroelectric transition[J]. Appl Phys Lett, 2012, 101:
132903.
[34] THACHER P D. Electrocaloric effects in some ferroelectric and
antiferroelectric Pb(Zr, Ti)O3 compounds[J]. J Appl Phys, 1968, 39:
1996–2002.
[35] BAI Y, HAN X, QIAO L J. Optimized electrocaloric refrigeration
capacity in lead–free (1–x)BaZr0. 2Ti0. 8O3–xBa0. 7Ca0. 3TiO3 ceramics[J].
Appl Phys Lett, 2013, 102: 252904.
[36] KAR–NARAYAN S, MATHUR N D. Direct and indirect
electrocaloric measurements using multilayer capacitors[J]. J Phys D
Appl Phys, 2010, 43: 032002.
[37] WANG J F, YANG T, CHEN S, et al. Nonadiabatic Direct
Measurement Electrocaloric Effect in Lead-Free Ba, Ca(Zr, Ti)O3
|