首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
锡钛酸钡BaSnxTi1–xO3 厚膜陶瓷的大电卡效应
作者:李江 路标 李丹丹 姚英邦 梁波 陶涛 鲁圣国 
单位:广东省功能软凝聚态物质重点实验室 广东工业大学材料与能源学院 
关键词:电卡效应 流延法 厚膜陶瓷 锡钛酸钡 
分类号:TQ174
出版年,卷(期):页码:2018,46(9):0-0
DOI:10.14062/j.issn.0454-5648.2018.09.01
摘要:
对无铅铁电材料锡钛酸钡(Ba(SnxTi1–x)O3(BSnT))(x=5%,10%,15%,20%,摩尔比)陶瓷进行了研究,利用流延法
得到锡钛酸钡膜带,采用X 射线衍射技术对烧结后的厚膜陶瓷进行结构分析,利用扫描电子显微镜分析了样品形貌,测量
了样品介温关系和电滞回线,并利用Maxwell 关系对电卡效应进行了计算。结果表明:厚膜陶瓷BSnT 在不同的Sn4+掺杂量
下的电卡效应有明显的差异,在x=0.05 及外加电场10 MV/m 时,绝热温变(ΔT)可达到2.1 K,且x=0.05 的样品在5 MV/m 的
电卡效率最高达到0.24×106 K·m·V–1。无铅铁电陶瓷拥有大的电卡效应可望在制冷器件上作为制冷剂使用。

 Lead-free ferroelectric materials of Sn4+ ions doped barium titanate (BaxSn1–xTiO3 (BSnT)) with Sn4+ ionic contents of 5%,

10%, 15%, and 20% (in mole fraction) were prepared, and the thick film ceramics were fabricated by a tape casting method. The
microstructure of the BSnT ceramics after sintering was characterized by X-ray diffraction. The morphologies of the ceramics were
analyzed by scanning electron microscopy. The dielectric constant and loss as a function of temperature, and the hysteresis loop as a
function of electric field and temperature were measured. The electrocaloric effect (ECE) was calculated based on the Maxwell
equations. The results indicate that the electrocaloric effect of the thick film ceramics is affected by Sn4+ ionic content. As x=0.05, ΔT
can reach 2.1 K when E=10 MV/m. The maximum elctrocaloric efficiency is up to 0.24×10–6 K·m·V–1 when E=5 MV/m for the
composition as x=0.05. The lead-free ceramics with the great ECE have a promising potential application as a refrigerant in the future
cooling devices.
基金项目:
国家自然科学基金(51372042);国家自然科学基金–广东省 联合基金(U1501246);广东省自然科学基金重大基础研究培 育项目(2015A030308004);广东省教育厅重大基础研究培育 项目(2014GKXM039)资助。
作者简介:
鲁圣国 广东工业大学材料与能源学院教授,博士生导师,智能材料与能量转化器件工程技 术研究中心主任。IEEE 高级会员,IEEE 北京分部创会高级会员,中国物理学会电介质专业 委员会委员,中国复合材料学会介电高分子复合材料及应用专业委员会常务委员,国际刊 物International Journal of Metallurgical & Materials Engineering,IET Nanodielectrics 的编委。 曾在香港理工大学应用物理系和材料研究中心、香港城市大学物理和材料科学系、美国宾州 州立大学材料研究所从事研究工作。目前主持国家自然科学基金委-广东省联合基金、国家 自然科学基金面上项目、广东省自然科学基金重大基础研究培育项目、广东省教育厅重大基 础研究培育项目。在Science、Advanced Materials, Advanced Functional Materials, Journal of Materials Chemistry C, ACS Applied Materials and Interface,Physics Review B 等国际刊物和国际会议发表论文146 篇,其中SCI 收录97 篇,获得授权中国专利3 项、美国专利公开1 项、世界专利(PCT)公开1 项、中国专利公开23 项。主要研究方 向为智能材料和器件,能量储存、转换材料和器件。
参考文献:

 [1] KUTNJAK Z. Electrocaloric Effect: Theory, Measurements, and

Applications[M]. Wiley Encyclopedia of Electrical and Electronics
Engineering, 2015: 1–19.
[2] VALANT M. Electrocaloric materials for future solid–state
refrigeration technologies[J]. Progr Mater Sci, 2012, 57(6): 980–1009.
[3] 鲁圣国, 唐新桂, 伍尚华, 等. 铁电材料中的大电卡效应[J]. 无机
材料学报. 2014(1): 6–12.
LU Shengguo, TANG Xingui, WU Shanghua, et al. J Inorg Mater (in
Chinese), 2014(1): 6–12.
[4] LINES M E, GLASS A M. Principles and applications of ferroelectrics
and related materials[M]. New York: Oxford University Press, 1977.
[5] MITSU T, TATSUZAKI I. Introduction to the physics of
ferroelectricity[M]. London: Gordon and Breaeh, 1976.
[6] KOBECO P, KURTCHATOV J. Dielectric properties of Rochelle salt
crystal[J]. Z Phys, 1930, 66: 192–205.
[7] Wiseman G G, Kuebler J K. Electrocaloric effect in ferroelectric
Rochelle salt[J]. Phys Rev, 1963, 131(5): 2023–2027.
[8] POHL R O, TAYLO V L. Electrocaloric effect in doped alkali
halides[J]. Phys Rev Lett, 1968, 178(3): 1431–1436.
[9] SHEPERD I, FEHER G. Cooling by the adiabatic depolarization of
OH–molecules in KCL[J]. Phys Rev Lett, 1965, 15(5): 194–198.
[10] SHEBANOV L, BORMAN K. On lead-scandium Tantalate solid
solutions with high electrocaloric effect[J]. Ferroelectrics, 1992, 127:
1143–1148.
[11] MISCHENKO A S, ZHANG Q, SCOTT J F, et al. Giant electrocaloric
effect in thin–film PbZr0. 95Ti0. 05O3[J]. Science, 2006, 311(5765):
1270–1271.
[12] NEESE B, CHU B J, Lu S G, et al. Large Electrocaloric Effect in
Ferroelectric Polymers Near Room Temperature[J]. Science, 2008:
821–823.
[13] COLE M W, NGO E, HIRSCH S, et al. The fabrication and material
properties of compositionally multilayered Ba1–xSrxTiO3 thin films for
realization of temperature insensitive tunable phase shifter devices[J]. J
Appl Phys, 2007, 102: 034104.
[14] ZHOU L Q, VILARINHO P M, BAPTISTA J L. Dependence of the
structural and dielectric properties of Ba1–xSrxTiO3 ceramic solid
solutions on raw material processing[J]. J Eur Ceram Soc, 1999, 99:
2015–2020.
[15] 简晓东, 路标, 李丹丹, 等. BaZr0.2Ti0.8O3无铅厚膜陶瓷的电卡效
应[J]. 硅酸盐学报. 2017, 45(3): 333–338.
JIAN Xiaodong,LU Biao,LI Dandan,et al.J Chin Ceram Soc.2017,
45(3): 333–338.
[16] REHRIG P W, PARK S E, TROLIER–MCKINSTRY S, et al.
Piezoelectric properties of zirconium-doped barium titanate single
crystals grown by templated grain growth[J]. J Appl Phys, 1999, 86:
1657.
[17] HENNINGS D, SCHNELL A, SIMON G J. Diffuse ferroelectric phase
transition in Ba(Ti1−yZry)O3 ceramics[J]. J Am Ceram Soc, 1982, 65:
539.
[18] ANWAR S, SAGDEOPR, LALLA N P. Ferroelectric relaxor behavior
in hafnium doped barium–titanate ceramic[J]. Solid State Commun,
2006, 138: 331–336.
[19] TIAN H Y, WANG Y, MIAO J, et al. Preparation and characterization
of hafnium doped barium titanate ceramics[J]. J Alloy Compd, 2007,
431: 197–202.
[20] PAYNE W H, TENNERY V J. Dielectric and structural investigations
of the system BaTiO3–BaHfO3[J]. J Am Ceram Soc, 1965: 413–417.
[21] ANG C, JING Z, YU Z. Ferroelectric relaxor Ba(Ti, Ce)O3[J]. J
Phys–Conden Mat , 2002, 14: 8901–8912.
[22] CURECHERIU L P, DELUCA M, MOCANU Z V, et al. Investigation
of the ferroelectric-relaxor crossover in Ce-doped BaTiO3 ceramics by
impedance spectroscopy and Raman study[J]. Phase transit, 2013,
86(7): 703–714.
[23] LU S G, XU Z K, CHEN H. Tunability and relaxor properties of
 
[24] HORCHIDAN N, IANCULESCU A C, CURECHERIU L P, et al.
Preparation and characterization of barium titanate stannate solid
solutions[J]. J Alloys Compd, 2011, 509(14): 4731–4737.
[25] WEI X, FENG Y J, YAO X. Dielectric relaxation behavior in barium
stannate titanate ferroelectric ceramics with diffused phase transition[J].
Appl Phys Lett, 2003, 83: 2031–2033.
[26] HORCHIDAN N, IANCULESCU A C, VASILESCU C A, et al.
Multiscale study of ferroelectric-relaxor crossover in BaSnxTi1–xO3
ceramics[J]. J Eur Ceram Soc, 2014, 34(15): 3661–3674.
[27] LUO Z D, ZHANG D W, LIU Y et al. Enhanced electrocaloric effect
in lead-free BaTi1–xSnxO3 ceramics near room temperature[J]. Appl
Phys Lett, 2014, 105: 102904.
[28] JIN L, LI F, ZHANG S J. Decoding the fingerprint of ferroelectric
loops: comprehension of the material properties and structures[J]. J
Am Ceram Soc, 2014, 97(1): 1–27.
[29] LU S G, CAI Z H, OUYANG Y X, et al. Electrical field dependence of
electrocaloric effect in relaxor ferroelectrics[J]. Ceram Inter, 2015, 41:
S15–S18.
[30] LU S G, RO?I? B, ZHANG Q M, et al. Electrocaloric effect in
ferroelectric polymers[J]. Appl Phys A, 2012, 107(3): 559–566.
[31] Morimoto K, Uematsu A, Sawai S, et al. Simultaneous Measurement
of specific heat capacity, thermal conductivity and thermal diffusivity
of ferroelectric Ba(Ti1−x, Snx)O3 ceramics by thermal radiation
calorimetry[J]. Jpn J Appl Phys, 2002, 41: 6943–6947.
[32] BAI Y, HAN X, DING K, et al. Combined effects of diffuse phase
transition and microstructure on the electrocaloric effect in
Ba1–xSrxTiO3 ceramics[J]. Appl Phys Lett, 2013, 103: 162902.
[33] LI X, QIAN X S, GU H, et al. Giant electrocaloric effect in
ferroelectric poly(vinylidenefluoride–trifluoroethylene) copolymers
near a first–order ferroelectric transition[J]. Appl Phys Lett, 2012, 101:
132903.
[34] THACHER P D. Electrocaloric effects in some ferroelectric and
antiferroelectric Pb(Zr, Ti)O3 compounds[J]. J Appl Phys, 1968, 39:
1996–2002.
[35] BAI Y, HAN X, QIAO L J. Optimized electrocaloric refrigeration
capacity in lead–free (1–x)BaZr0. 2Ti0. 8O3–xBa0. 7Ca0. 3TiO3 ceramics[J].
Appl Phys Lett, 2013, 102: 252904.
[36] KAR–NARAYAN S, MATHUR N D. Direct and indirect
electrocaloric measurements using multilayer capacitors[J]. J Phys D
Appl Phys, 2010, 43: 032002.
[37] WANG J F, YANG T, CHEN S, et al. Nonadiabatic Direct
Measurement Electrocaloric Effect in Lead-Free Ba, Ca(Zr, Ti)O3
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com