[1] 晏海学, 李承恩, 周家光. 高TC 铋层状压电陶瓷结构与性能[J]. 无
机材料学报, 2000, 15(2): 209–220.
YAN Haixue, LI Chengen, ZHOU Jiaguang. J Inorg Mater(in Chinese),
2000, 15(2): 209–220.
[2] 赵莹, 杜慧玲, 李会录, 等. 铋层状结构压电陶瓷的制备与性能优
化[J]. 硅酸盐学报, 2008, 36(9): 1262–1266.
ZHAO Ying, DU Huiling, LI Huilu, et al. J Chin Ceram Soc, 2008,
36(9): 1262–1266.
[3] 江向平, 温佳鑫, 陈超. Mn 改性Na0.5Bi2.5Nb2O9 高温压电陶瓷的研
究[J]. 无机材料学报, 2012, 27(8): 827–832.
JIANG Xiangping, WEN Jiaxin, CHEN Chao. J Inorg Mater(in
Chinese), 2012, 27(8): 827–832.
[4] NOGUCHI Y, MIYAYAMA M, KUDO T. Ferroelectric properties of
intergrowth Bi4Ti3O12–SrBi4Ti4O15 ceramics[J]. Appl Phys Lett, 2000,
77(22): 3639–3641.
[5] SHI L, NOGUCHI Y, MIYAYAMA M, et al. Rietveld analysis and
dielectric properties of Bi2WO6–Bi4Ti3O12 ferroelectric system[J].
Mater Res Bull, 2001, 36(3–4): 531–540.
[6] Yi Z G, Li Y X, Yang Q B, et al. La doping effects on intergrowth
Bi2WO6–Bi3TiNbO9 ferroelectrics[J]. Ceram Int, 2008, 34(4): 735–739.
[7] FEI L, ZHOU Z, HUI S, et al. Electrical properties of
CaBi4Ti4O15–Bi4Ti3O12 piezoelectric ceramics[J]. Ceram Int, 2015,
41(8): 9729–9733.
[8] FEI L, ZHOU Z, HUI S, et al. Effects of La3+substitution on structure
and temperature dependence of electrical properties of
CaBi4Ti4O15–Bi4Ti3O12 ceramics[J]. J Mater Sci Mater Electron, 2015,
26(9): 6843–6847.
[9] WANG W, SHAN D, SUN J, et al. Aliovalent B-site modification on
three and four layer Aurivillius intergrowth[J]. J Appl Phys, 2008,
103(4): 044102.
[10] YAO Z, CHU R, XU Z, et al. Enhanced electrical properties of (Li,Ce)
co-doped Sr(Na0.5Bi0.5)Bi4Ti5O18 high temperature piezoceramics[J].
Rsc Advances, 2016, 6(40): 33387–33392.
[11] LONG C, FAN H, LI M. High temperature Aurivillius piezoelectrics:
the effect of (Li, Ln) modification on the structure and properties of (Li,
Ln)0.06(Na, Bi)0.44Bi2Nb2O9 (Ln = Ce, Nd, La and Y)[J]. Dalton Trans,
2013, 42(10): 3561–70.
[12] TELLIER J, BOULLAY P, MERCURIO D. Crystal structure of the
Aurivillius phases in the system Bi4Ti3O12–PbTiO3[J]. Z Kristallogr,
2007, 222(5): 234–243.
[13] LONG C, FAN H, LI M. A candidate for lead-free
ultrahigh-temperature piezoelectrics: the excellent electro-mechanical
properties of Aurivillius oxides,
Ca1−5xLi2xNd2xBi2Nb2−2xScxWxO9–1.5x[J]. Cryst Eng Comm, 2013,
15(47): 10212.
[14] ZHU J, CHEN X B, LU W P, et al. Properties of lanthanum-doped
Bi4Ti3O12-SrBi4Ti4O15 intergrowth ferroelectrics[J]. Appl Phys Lett,
2003, 83(9): 1818–1820.
[15] JEON M K, KIM Y I, NAHM S H, et al. Crystal structure of
Bi4−xCexTi3O12(x= 0, 0.25, 0.5 and 0.75) studied by Raman
spectroscopy and neutron powder diffraction[J]. J Phys D Appl Phys,
2006, 39(23): 5080–5085.
[16] 朱骏, 毛翔宇, 陈小兵. Bi4–xLaxTi3O12–SrBi4–yLayTi4O15 共生结构铁
电材料拉曼光谱研究[J]. 物理学报, 2004, 53(11): 3929–3933.
ZHUJun, MAOXiangYu, CHENXiaoBing. Acta Phys Sin(in Chinese),
2004, 53(11): 3929–3933.
[17] SHAO C, LU Y, WANG D, et al. Effect of Nd substitution on the
microstructure and electrical properties of Bi7Ti4NbO21
piezoceramics[J]. J Eur Ceram Soc, 2012, 32(14): 3781–3789.
[18] LONG C, CHANG Q, WU Y, et al. New layer-structured ferroelectric
polycrystalline materials Na0.5NdxBi4.5–xTi4O15 crystal structures,
electrical properties and conduction behaviors[J]. J Mater Chem, 2015,
3(34): 8852–8864.
[19] WANG Q, FAN H, LONG C, et al. Crystal structure and thermal
annealing behaviors of high d33 Aurivillius phase ceramics
Li0.04Ce0.04Na(0.46–x/2)Bi(4.46+x/2)Ti(4–x)ScxO15 with the Sc3+/Bi3+
co–substitution[J]. J Mater Sci Mater Electron, 2014, 25(7): 2961–2968.
[20] JIANG X P, JIANG X A, CHEN C, et al. Effect of potassium sodium
niobate (KNN) substitution on the structural and electrical properties of
Na0.5Bi4.5Ti4O15 ceramics[J]. J Phys D Appl Phys, 2016, 49(12):
125101.
[21] LONG C, FAN H, WU Y, et al. Hole conduction and
electro-mechanical properties of Na0.5Bi2.5Ta2O9 based piezoelectric
ceramics with the Li+/Ce3+/Sc3+ modification[J]. J Appl Phys, 2014,
116(7): 1267–667.
[22] FANG P, LIU P, XI Z, et al. Effect of cerium additives on structure and
electrical properties of Aurivillius oxides (K0.16Na0.84)0.5Bi4.5Ti4O15[J].
Mater Sci Eng B, 2014, 186(1): 21–25.
|