首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
聚羧酸减水剂对水泥浆黏弹性能的影响
作者:张力冉1 2  霞3 孔祥明2 张艳荣4  锋1 董必钦1 
单位:1. 深圳大学土木工程学院 广东省滨海土木工程耐久性重点实验室 广东 深圳 518060  2. 清华大学土木工程系 北京 100084 3. 中国石化石油工程技术研究院 北京 100101  4. 北京交通大学土木建筑工程学院 北京 100044 
关键词:微流变 原位 水泥浆体 黏弹性 聚羧酸减水剂 
分类号:TU528
出版年,卷(期):页码:2018,46(10):0-0
DOI:10.14062/j.issn.0454-5648.2018.10.06
摘要:

 采用光学微流变仪测得新拌水泥浆体的弹性指数(IE)、宏观黏度指数(IMV)、弹性模量(G′)、黏性模量(G″)及固液平衡值(kSLB)

等参数,定量分析了普通型酯类聚羧酸减水剂(PC1)、普通型醚类聚羧酸减水剂(PC2)及缓释型醚类聚羧酸减水剂(PC3)对水泥浆体
黏弹性及微观结构的影响规律。结果表明:空白浆体的IE、IMV、G′及G″在拌合后短时间内迅速增加并趋于恒定值,随着浆体静
置颗粒堆积及水泥持续水化,水化产物导致颗粒间相互搭接,形成较强的“网络结构”,使浆体的黏、弹性显著增加。随着浆体微
观结构逐渐形成,浆体逐渐由黏性流体转变为弹性固体,其黏弹性趋于稳定。当掺入PC1 后,可显著抑制浆体IE、IMV、G′及G″
增长趋势。PC1 的掺入降低了浆体的黏弹性,这是由PC1 对水泥颗粒的分散作用及其对水泥水化的延缓作用所致,即PC1 的掺
加增大了浆体内“笼”的尺寸,延缓了浆体“网络结构”的搭接。与普通型PC2 相比,缓释型PC3 在常温下抑制浆体IE、IMV、G′及
G″增长的能力较小,其初始分散作用较弱;高温下,PC3 抑制浆体IE、IMV、G′及G″增长的能力较明显,并显著延缓kSLB 降低趋
势,在高温下PC3 表现出明显的缓释效应。

 Series of parameters affecting fresh cement pastes including elastic index (IE), macroscopic viscosity index(IMV), elastic modulus (G′), viscous modulus (G″) and solid-liquid balance (kSLB) were obtained by a micro-rheology analyzer to quantitatively investigate the effect of conventional ester type polycarboxylate superplasticizer PC1, conventional ether type polycarboxylate superplasticizer PC2 and slow-release ether type polycarboxylate superplasticizer PC3 on the viscoelasticity and microstructure of fresh cement paste (FCP). The results show that IE, IMV, G' and G" of the blank paste rapidly increase and reach to constant values in a short period after mixing, originating from the settlement of the cement grains and the continuous cement hydration producing a large number of new products such like ettringite crystals that cross-link cement grains to form a strong ‘network structure’. The viscosity and elasticity of the FCP increase rapidly after mixing. With gradual formation of the microstructure, the FCP gradually develops from a viscous fluid to an elastic solid with relatively stable viscosity and elasticity. When PC1 is introduced to the paste, the growth of IE, IMV, G' and G" all are inhibited, compared to those of the blank paste. This indicates that the incorporation of PC1 reduces the

viscosity and elasticity of the FCP due to its fluidizing effect. Namely, the addition of PC1 delays the formation of the ‘network structure’ and increases the size of the ‘cage’ in the paste. Compared to PC2, the ability of the post-acting PC3 to inhibit the growth of IE, IMV, G' and G" in the paste at room temperature is low, indicating that the initial dispersive efficiency of PC3 is lower than that of PC2. At elevated temperature, the ability of PC3 to inhibit the growth of IE, IMV, G' and G" is more obvious, and PC3 significantly slows down the drop of kSLB, indicating that PC3 shows a visible slow-release effect at high temperatures

基金项目:
作者简介:
参考文献:

 [1] HAN D, FERRON R D. Influence of high mixing intensity on rheology, hydration, and 

 
microstructure of fresh state cement paste[J]. Cem Concr Res, 2016, 84: 95–106.
[2] ROUSSEL N, A LEMAÎTRE, FLATT R J, et al. Steady state flow of cement suspensions: A 
 
micromechanical state of the art[J]. Cem Concr Res, 2010, 40: 77–84.
[3] M ERIKSSONA, FRIEDRICH M, VORSCHULZE C. Variations in the rheology and penetrability of 
 
cement-based grouts—an experimental study[J]. Cem Concr Res, 2004, 34: 1111–1119.
[4] WALLEVIK O H, WALLEVIK J E. Rheology as a tool in concrete science: The use of rheographs and 
 
workability boxes[J]. Cem Concr Res, 2011, 41: 1279–1288.
[5] HANEHARA S, YAMADA K. Rheology and early age properties of cement systems[J]. Cem Concr Res, 
 
2008, 21: 175–195.
[6] AÏTCIN P-C. Entrained air in concrete: rheology and freezing resistance[C]//AÏTCIN P-C, FLATT R 
 
J ed. Science and Technology of Concrete Admixtures. Cambridge: Woodhead Publishing, 2016: 87–94. 
[7] 蒲心诚. 超高强性能混凝土[M]. 重庆: 重庆大学出版社, 2004.
[8] YAHIA A, MANTELLATO S, FLATT R J. Concrete rheology: a basis for understanding chemical 
 
admixtures[C]//AÏTCIN P-C, FLATT R J ed. Science and Technology of Concrete Admixtures. Cambridge: 
 
Woodhead Publishing, 2016: 219–248. 
[9] ZHANG Y R, KONG X M, GAO L. In-situ measurement of viscoelastic properties of fresh cement 
 
paste by a microrheology analyzer[J]. Cem Concr Res, 2016, 79: 291–300.
[10] CONTE T, CHAOUCHE M. Rheological behavior of cement pastes under Large Amplitude Oscillatory 
 
Shear[J]. Cem Concr Res, 2016, 89: 332–344. 
[11] STRUBLE L J, ZHANG H, SUN G K, et al. Oscillatory shear behavior of Portland cement paste 
 
during early hydration[J]. Mater Struct, 2000, 2(7): 141–149.
[12] NACHBAUR L, MUTIN J C, NONAT A, et al. Dynamic mode rheology of cement and tricalcium silicate 
 
pastes from mixing to setting[J]. Cem Concr Res, 2001, 31(2): 183–192.
[13] OUYANG J, TAN Y Q. Rheology of fresh cement asphalt emulsion pastes[J]. Constr Build Mater, 
 
2015, 80: 236–243. 
[14] KONG X M, ZHANG Y R, HOU S S. Study on the rheological properties of Portland cement pastes 
 
with polycarboxylate superplasticizers[J]. Rheol Acta, 2013, 52: 707–718.
[15] FERRARA L, CREMONESI M, TREGGER N. On the identification of rheological properties of cement 
 
suspensions: rheometry, computational fluid dynamics modeling and field test measurements [J]. Cem 
 
Concr Res, 2012, 42(8): 1134–1146.
[16] MURRAY B S. Rheological properties of protein films[J]. Curr Opin Colloid In, 2011, 16(1): 27–
 
35.
[17] CASTRO A, BERGENSTÅHL B, TORNBERG E. Effect of heat treatment and homogenization on the 
 
rheological properties of aqueous parsnip suspensions[J]. J Food Eng, 2013, 117(3): 383–392.
[18] LI C, RUNGE K, SHI F, et al. Effect of froth rheology on froth and flotation performance[J]. 
 
Miner Eng, 2018, 115: 4–12. 
[19] MACKINTOSHA F C, SCHMIDT C F. Microrheology[J]. Curr Opin Colloid In, 1999, 4: 300–303.
[20] MOSCHALIS T. Microrheology and particle tracking in food gels and emulsion[J]. Curr Opin 
 
Colloid In 2013, 18(4): 311–323.
[21] WAIGH T A. Microrheology of complex fluids[J]. Rep Prog Phys, 2005, 68(17): 3282-3285. 
[22] LAI S K, WANG Y Y, WIRTZ D. Micro- and macrorheology of mucus[J]. Adv Drug Deliver Rev, 2009, 
 
61(2): 86–100.
[23] MUKHOPADHYAY A, GRANICK S. Micro- and nanorheology[J]. Curr Opin Colloid In, 2001, 6(5/6): 423
 
–429. 
[24] LU J, C M CORVALAN. Soft food microrheology[J]. Curr Opin Food Sci, 2016, 9: 112–116. 
[25] TAORMINA M J, HAY E A, PARTHASARATHY R. Passive and active microrheology of the intestinal 
 
fluid of the larval zebrafish[J]. Biophys J, 2017, 113(4): 957–965.
[26] FABRY B, MAKSYM G N, BUTLER J P, et al. Scaling the microrheology of living cells[J]. Phys Rev 
 
Lett, 2001, 87(14): 148102. 
[27] LEE M H, LAPOINTE C P, REICH D H, et al. Interfacial hydrodynamic drag on nanowires embedded in 
 
thin oil films and protein layers[J]. Langmuir, 2009, 25(14): 7976–7982.
[28] GÜELL O, SAGÉS F, TIERNO P. Magnetically driven Janus micro-ellipsoids realized via asymmetric 
 
gathering of the magnetic charge[J]. Adv Mater, 2011, 23(32): 3674–3679. 
[29] BUTT H J, CAPPELLA B, KAPPL M. Force measurements with the atomic force microscope: technique, 
 
interpretation and applications[J]. Surf Sci Rep, 2005, 59(1): 1–152.
[30] MAHAFFY R E, PARK S, GERDE E, et al. Quantitative analysis of the viscoelastic properties of 
 
thin regions of fibroblasts using atomic force microscopy[J]. Biophys J, 2004, 86(3): 1777–1793.
[31] BREEDVELD V, PINE D J. Microrheology as a tool for high-throughput screening[J]. J Mater Sci, 
 
2003, 38(22): 4461-4470.
[32] STARRS L, BARTLETT P. Colloidal dynamics in polymer solutions: optical two-point microrheology 
 
measurements[J]. Faraday Discuss. 2003, 123(1): 323–334.  
[33] ORTEGA F, RITACCO H, RUBIO R G. Interfacial microrheology: Particle tracking and related 
 
techniques[J]. Curr Opin Colloid In, 2010, 15: 237–245. 
[34] SLOPEK R P, MCKINLEY H K, HENDERSON C L, et al. In situ monitoring of mechanical properties 
 
during photopolymerization with particle tracking microrheology[J]. Polymer, 2006, 47(7): 2263–2268. 
[35] PINE D J, WEITZ D A, CHAIKIN P M, et al. Diffusing-Wave Spectroscopy [J]. Phys Rev Lett, 1988, 
 
60(12): 1134–1137.
[36] MATHIAS R, MACHADO A H E, ANDREAS N, et al. Introducing diffusing wave spectroscopy as a 
 
process analytical tool for pharmaceutical emulsion manufacturing[J]. J Pharm Sci, 2014, 103(12): 3902
 
–3913.
[37] NIEDERQUELL A, VÖLKER A C, KUENTZ M. Introduction of diffusing wave spectroscopy to study 
 
self-emulsifying drug delivery systems with respect to liquid filling of capsules[J]. Int J Pharmaceut, 
 
2012, 426(1/2): 144–152.
[38] BELLOUR M, SKOURI M, MUNCH J-P, et al. Brownian motion of particles embedded in a solution of 
 
giant micelles[J]. Eur Phys J E, 2002, 8(4): 431–436. 
[39] SCHULTZ M A, STRUBLE L J. Use of oscillatory shear to study flow behavior of fresh cement 
 
paste[J]. Cem Concr Res. 1993, 23(2): 273–282. 
[40] SAAK A W, JENNINGS H M, SHAH S P. The influence of wall slip on yield stress and viscoelastic 
 
measurements of cement paste[J]. Cem Concr Res, 2001, 31(2): 205–212.
[41] ZHANG Y R, KONG X M. Correlations of the dispersing capability of NSF and PCE types of 
 
superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes[J]. 
 
Cem Concr Res, 2015, 69: 1–9.
[42] ZHANG L R, KONG X M, XING F, et al. Working mechanism of post-acting polycarboxylate 
 
superplasticizers containing acrylate segments[J]. J App Polym Sci, 2018, 135(5): 45753.
[43] MEIER M R, PLANK J, RIJKENBURGER A. Impact of different types of polycarboxylate 
 
superplasticizers on spontaneous crystallisation of ettringite[J]. Adv Cem Res, 2016, 28(5): 310–319.
[44] GRUSCZSCINSKI E, BROWN P W, BOTHE J V. The formation of ettringite at elevated temperature[J]. 
 
Cem Concr Res, 1993, 23(4): 981–987.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com