首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
非金属纳米材料表面等离子体共振的研究进展
作者: 鹏1 杨修春1 2 
单位:1. 同济大学材料科学与工程学院 上海 201804 2. 先进土木工程材料教育部重点实验室 上海 201804 
关键词:非金属纳米材料 p 型半导体 n 型半导体 金属型过渡金属化合物 表面等离子体共振 
分类号:TB321
出版年,卷(期):页码:2018,46(10):0-0
DOI:10.14062/j.issn.0454-5648.2018.10.09
摘要:

 表面等离子体共振被广泛应用于光催化、纳米集成光子学、光学传感、生物标记、医学成像、太阳能电池以及表面

增强Raman 光谱等方面。除了金属纳米材料以外,一些非金属纳米材料也具有表面等离子体共振特性,如自掺杂半导体、外
掺杂半导体、导电过渡金属化合物等。非金属等离子体共振纳米材料具有来源丰富、制备方便、价格合适、熔点高、耐磨、
化学稳定性好、表面等离子体共振特性可调等优点,受到越来越多的关注。本文系统地梳理了文献中关于非金属等离子体共
振纳米材料的研究,将其归类为p 型半导体、n 型半导体和金属型过渡金属化合物,评述了各自的特点及研究进展,并与金
属纳米材料的表面等离子体共振效应进行了比较,提出了需注意的研究问题及进一步的研究方向。

 Surface plasmon resonance (SPR) is widely applied in a number of realms such as photocatalysis, integrated nanophotonics,

optical sensing, bio-labeling, medical imaging, solar cell and surface-enhanced Raman spectroscopy. Besides metallic nanomaterials,
some nonmetallic nanomaterials also possess surface plasmon resonance properties including self-doped semiconductors,
extrinsically-doped semiconductors, conductive transition metal oxides and metal nitrides. Nonmetallic SPR nanomaterials have
attracted much attention due to their rich resources, convenient preparation, appropriate price, high melting point, good abrasion
resistance and chemical stability, and adjustable SPR properties. In this paper, nonmetallic materials were classified as p-type
semiconductors, n-type semiconductors and metal-type transition metal compounds, and their characteristics and research progress
were discussed via systematically summarizing research work on nonmetallic SPR nanomaterials in the literatures. The main
differences and similarities of SPR properties between nonmetallic and metallic nanomaterials were also compared. In addition, we
analyzed the existing problems and gave the further research directions.
基金项目:
作者简介:
参考文献:
[1] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269?271.
[2] ATTIA Y A, BUCETA D, BLANCO-VARELA C, et al. Structure-directing and high-efficiency photocatalytic hydrogen production by Ag clusters[J]. J Am Chem Soc, 2014, 136(4): 1182?1185.
[3] FAKHOURI H, AREFI-KHONSARI F, JAISWAL A K, et al. Enhanced visible light photoactivity and charge separation in TiO2/TiN bilayer thin films[J]. Appl Catal A, 2015, 492: 83?92.
[4] LI C, YANG W, LIU L, et al. In situ growth of TiO2 on TiN nanoparticles for non-noble-metal plasmonic photocatalysis[J]. RSC Adv, 2016, 6(76): 72659?72669.
[5] PARK D G, CHA T H, LIM K Y, et al. Robust ternary metal gate electrodes for dual gate CMOS devices[C]//Electron Devices Meeting, Washington DC, USA, 2001: 30.6.1?30.6.4.
[6] ENGHETA N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials[J]. Science, 2007, 317(5845): 1698?1702.
[7] HAES A J, VAN-DUYNE R P. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles[J]. J Am Chem Soc, 2002, 124(35): 10596?10604.
[8] LEE K S, EL-SAYED M A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition[J]. J Phys Chem B, 2006, 110(39): 19220?19225.
[9] GUDURU S S K, KRIEGEL I, RAMPONI R, et al. Plasmonic heavily-doped semiconductor nanocrystal dielectrics: making static photonic crystals dynamic[J]. J Phys Chem C, 2015, 119(5): 2775?2782.
[10] HALL D. Use of optical biosensors for the study of mechanistically concerted surface adsorption processes[J]. Anal Biochem, 2001, 288(2): 109?125.
[11] SCHUCK P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules[J]. Annu Rev, 1997, 26: 541?566.
[12] SOKOLOV K, FOLLEN M, AARON J, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles[J]. Cancer Res, 2003, 63(9): 1999?2004.
[13] EL-SAYED I H, HUANG X, EL-SAYED M A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer[J]. Nano Lett, 2005, 5(5): 829?834.
[14] GIANNINI V, FERNÁNDEZ-DOMÍNGUEZ A I, HECK S C, et al. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters[J]. Chem Rev, 2011, 111(6): 3888?3912.
[15] LINDQUIST N C, NAGPAL P, MCPEAK K M, et al. Engineering metallic nanostructures for plasmonics and nanophotonics[J]. Rep Prog Phys, 2012, 75(3): 036501.
[16] AMENDOLA V, SCARAMUZZA S, AGNOLI S, et al. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys[J]. Nanoscale, 2014, 6(3): 1423?1433.
[17] XIAO G, MAN S, SHI W, et al. Surface plasmon resonance and surface-enhanced Raman scattering activity of SiO2-Au core-cap nanostructure arrays[J]. Appl Phys A, 2014, 117(4): 1907?1914.
[18] YANG X, HOU J, LIU Y, et al. OPAA template-directed synthesis and optical properties of metal nanocrystals[J]. Nanoscale Res Lett, 2013, 8: 1?8.
[19] YANG X, LI L, HUANG M, et al. In situ synthesis of Ag-Cu bimetallic nanoparticles in silicate glass by a two-step ion-exchange route[J]. J Non-Cryst Solids, 2011, 357(11/13): 2306?2308.
[20] YANG X, LI W, LI Z, et al. Depth profiles of Ag nanoparticles in silicate glass[J]. Appl Phys A, 2008, 90(3): 465?467.
[21] 杨修春. 离子交换和热处理对贵金属掺杂硅酸盐玻璃光致发光的影响[J]. 无机材料学报, 2016, 31(10): 1039?1045.
YANG Xiuchun. J Inorg Mater (in Chinese), 2016, 31(10): 1039?1045.
[22] 杨修春, 刘会欣, 李玲玲, 等. 影响贵金属纳米颗粒表面等离子体共振因素评述[J]. 功能材料, 2010, 41(2): 341?345.
YANG X, LIU X, LI L, et al. J Funct Mater (in Chinese), 2010, 41(2): 341?345.
[23] LIU X, SWIHART M T. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials[J]. Chem Soc Rev, 2014, 43(11): 3908?3920.
[24] WILLIAMS C R, ANDREWS S R, MAIER S A, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces[J]. Nat Photonics, 2008, 2(3): 175?179.
[25] KUNDU J, LE F, NORDLANDER P, et al. Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates[J]. Chem Phys Lett, 2008, 452(1/3): 115?119.
[26] ALVAREZ M M, KHOURY J T, SCHAAFF T G, et al. Optical absorption spectra of nanocrystal gold molecules[J]. J Phys Chem B, 1997, 101(19): 3706?3712.
[27] BOLTASSEVA A, ATWATER, H A. Low-loss plasmonic metamaterials[J]. Science, 2011, 331(6015): 290?291.
[28] GARBA E J D, JACOBS R L. The electronic structure of Cu2?xSe [J]. Physica B+C, 1986, 138(3): 253?260.
[29] KRIEGEL I, JIANG C, RODRIGUEZ-FERNÁNDEZ J, et al. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals [J] J Am Chem Soc, 2012, 134(3): 1583?1590.
[30] LI W, ZAMANI R, RIVERA GIL P, et al. CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents[J]. J Am Chem Soc, 2013, 135(19): 7098?7101.
[31] HSU S W, ON K, TAO A R. Localized surface plasmon resonances of anisotropic semiconductor nanocrystals[J]. J Am Chem Soc, 2011, 133(47): 19072?19075.
[32] DORFS D, HARTLING T, MISZTA K, et al. Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals[J]. J Am Chem Soc, 2011, 133(29): 11175?11180.
[33] LLORENTE V B, DZHAGAN V M, GAPONIK N, et al. Electrochemical tuning of localized surface plasmon resonance in copper chalcogenide nanocrystals[J]. J Phys Chem C, 2017, 121(33): 18244?18253.
[34] LIU X, WANG X L, ZHOU B, et al. Size-controlled synthesis of Cu2?xE (E=S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films[J]. Adv Funct Mater, 2013, 23(10): 1256?1264.
[35] LIU X, LEE C, LAW W C, et al. Au-Cu2?xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging[J]. Nano Lett, 2013, 13(9): 4333?4339.
[36] ZHU Dewei, LIU Maixian, LIU Xin, et al. Au-Cu2?xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy[J]. J Mater Chem B, 2017, 5(25): 4934?4942.
[37] MANTHIRAM K, ALIVISATOS A P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals[J]. J Am Chem Soc, 2012, 134(9): 3995?3998.
[38] WEN L, CHEN L, ZHENG S, et al. Ultrasmall biocompatible WO3?x nanodots for multi-modality imaging and combined therapy of cancers[J]. Adv Mater, 2016, 28(25): 5072?5079.
[39] HUANG Q, HU S, ZHUANG J, et al. MoO3?x-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes[J]. Chem Eur J, 2012, 18(48): 15283?15287.
[40] CHENG H, QIAN X, KUWAHARA Y, et al. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions[J]. Adv Mater, 2015, 27(31): 4616?4621.
[41] ROWE D J, JEONG J S, MKHOYAN K A, et al. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance[J]. Nano Lett, 2013, 13(3): 1317?1322.
[42] KANEHARA M, KOIKE H, YOSHINAGA T, et al. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region[J]. J Am Chem Soc, 2009, 131(49): 17736?17737.
[43] GARCIA G, BUONSANTI R, RUNNERSTROM E L, et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals[J]. Nano Lett, 2011, 11(10): 4415?4420.
[44] GU Y, ZHU Z, SONG J, et al. Triangle-, tripod-, and tetrapod-branched ITO nanocrystals for anisotropic infrared plasmonics[J]. Nanoscale, 2017, 9(48): 19374?19383.
[45] BUONSANTI R, LLORDES A, ALONI S, et al. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals[J]. Nano Lett, 2011, 11(11): 4706?4710.
[46] ZUM FELDE U, HAASE M, WELLER H. Electrochromism of highly doped nanocrystalline SnO2:Sb[J]. J Phys Chem B, 2000, 104(40): 9388?9395.
[47] LEE H Y, CAI Y, BI S, et al. A dual-responsive nanocomposite toward climate-adaptable solar modulation for energy-saving smart windows[J]. ACS Appl Mater Interface, 2017, 9(7): 6054?6063.
[48] GORDON T R, PAIK T, KLEIN D R, et al. Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO)[J]. Nano Lett, 2013, 13(6): 2857?2863.
[49] GORDON T R, CARGNELLO M, PAIK T, et al. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity[J]. J Am Chem Soc, 2012, 134(15): 6751?6761.
[50] DE TRIZIO L, BUONSANTI R, SCHIMPF A M, et al. Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption[J]. Chem Mater, 2013, 25(16): 3383?3390.
[51] MORIN F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Phys Rev Lett, 1959, 3(1): 34?36.
[52] RINI M, CAVALLERI A, SCHOENLEIN R W, et al. Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance[J]. Opt Lett, 2005, 30(5): 558?560.
[53] MOOT T, PALIN C, MITRAN S, et al. Designing plasmon-enhanced thermochromic films using a vanadium dioxide nanoparticle elastomeric composite[J]. Adv Opt Mater, 2016, 4(4): 578?583.
[54] BISWAS K, RAO C N R. Metallic ReO3 nanoparticles[J]. J Phys Chem B, 2006, 110(2): 842?845.
[55] QUINTEN M. The color of finely dispersed nanoparticles[J]. Appl Phys B, 2001, 73(4): 317?326.
[56] REINHOLDT A, PECENKA R, PINCHUK A, et al. Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles[J]. Eur Phys J D, 2004, 31(1): 69?76.
[57] ISHII S, SUGAVANESHWAR R P, NAGAO T. Titanium nitride nanoparticles as plasmonic solar heat transducers[J]. J Phys Chem C, 2016, 120(4): 2343?2348.
 

 

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com