[1] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269?271.
[2] ATTIA Y A, BUCETA D, BLANCO-VARELA C, et al. Structure-directing and high-efficiency photocatalytic hydrogen production by Ag clusters[J]. J Am Chem Soc, 2014, 136(4): 1182?1185.
[3] FAKHOURI H, AREFI-KHONSARI F, JAISWAL A K, et al. Enhanced visible light photoactivity and charge separation in TiO2/TiN bilayer thin films[J]. Appl Catal A, 2015, 492: 83?92.
[4] LI C, YANG W, LIU L, et al. In situ growth of TiO2 on TiN nanoparticles for non-noble-metal plasmonic photocatalysis[J]. RSC Adv, 2016, 6(76): 72659?72669.
[5] PARK D G, CHA T H, LIM K Y, et al. Robust ternary metal gate electrodes for dual gate CMOS devices[C]//Electron Devices Meeting, Washington DC, USA, 2001: 30.6.1?30.6.4.
[6] ENGHETA N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials[J]. Science, 2007, 317(5845): 1698?1702.
[7] HAES A J, VAN-DUYNE R P. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles[J]. J Am Chem Soc, 2002, 124(35): 10596?10604.
[8] LEE K S, EL-SAYED M A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition[J]. J Phys Chem B, 2006, 110(39): 19220?19225.
[9] GUDURU S S K, KRIEGEL I, RAMPONI R, et al. Plasmonic heavily-doped semiconductor nanocrystal dielectrics: making static photonic crystals dynamic[J]. J Phys Chem C, 2015, 119(5): 2775?2782.
[10] HALL D. Use of optical biosensors for the study of mechanistically concerted surface adsorption processes[J]. Anal Biochem, 2001, 288(2): 109?125.
[11] SCHUCK P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules[J]. Annu Rev, 1997, 26: 541?566.
[12] SOKOLOV K, FOLLEN M, AARON J, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles[J]. Cancer Res, 2003, 63(9): 1999?2004.
[13] EL-SAYED I H, HUANG X, EL-SAYED M A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer[J]. Nano Lett, 2005, 5(5): 829?834.
[14] GIANNINI V, FERNÁNDEZ-DOMÍNGUEZ A I, HECK S C, et al. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters[J]. Chem Rev, 2011, 111(6): 3888?3912.
[15] LINDQUIST N C, NAGPAL P, MCPEAK K M, et al. Engineering metallic nanostructures for plasmonics and nanophotonics[J]. Rep Prog Phys, 2012, 75(3): 036501.
[16] AMENDOLA V, SCARAMUZZA S, AGNOLI S, et al. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys[J]. Nanoscale, 2014, 6(3): 1423?1433.
[17] XIAO G, MAN S, SHI W, et al. Surface plasmon resonance and surface-enhanced Raman scattering activity of SiO2-Au core-cap nanostructure arrays[J]. Appl Phys A, 2014, 117(4): 1907?1914.
[18] YANG X, HOU J, LIU Y, et al. OPAA template-directed synthesis and optical properties of metal nanocrystals[J]. Nanoscale Res Lett, 2013, 8: 1?8.
[19] YANG X, LI L, HUANG M, et al. In situ synthesis of Ag-Cu bimetallic nanoparticles in silicate glass by a two-step ion-exchange route[J]. J Non-Cryst Solids, 2011, 357(11/13): 2306?2308.
[20] YANG X, LI W, LI Z, et al. Depth profiles of Ag nanoparticles in silicate glass[J]. Appl Phys A, 2008, 90(3): 465?467.
[21] 杨修春. 离子交换和热处理对贵金属掺杂硅酸盐玻璃光致发光的影响[J]. 无机材料学报, 2016, 31(10): 1039?1045.
YANG Xiuchun. J Inorg Mater (in Chinese), 2016, 31(10): 1039?1045.
[22] 杨修春, 刘会欣, 李玲玲, 等. 影响贵金属纳米颗粒表面等离子体共振因素评述[J]. 功能材料, 2010, 41(2): 341?345.
YANG X, LIU X, LI L, et al. J Funct Mater (in Chinese), 2010, 41(2): 341?345.
[23] LIU X, SWIHART M T. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials[J]. Chem Soc Rev, 2014, 43(11): 3908?3920.
[24] WILLIAMS C R, ANDREWS S R, MAIER S A, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces[J]. Nat Photonics, 2008, 2(3): 175?179.
[25] KUNDU J, LE F, NORDLANDER P, et al. Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates[J]. Chem Phys Lett, 2008, 452(1/3): 115?119.
[26] ALVAREZ M M, KHOURY J T, SCHAAFF T G, et al. Optical absorption spectra of nanocrystal gold molecules[J]. J Phys Chem B, 1997, 101(19): 3706?3712.
[27] BOLTASSEVA A, ATWATER, H A. Low-loss plasmonic metamaterials[J]. Science, 2011, 331(6015): 290?291.
[28] GARBA E J D, JACOBS R L. The electronic structure of Cu2?xSe [J]. Physica B+C, 1986, 138(3): 253?260.
[29] KRIEGEL I, JIANG C, RODRIGUEZ-FERNÁNDEZ J, et al. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals [J] J Am Chem Soc, 2012, 134(3): 1583?1590.
[30] LI W, ZAMANI R, RIVERA GIL P, et al. CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents[J]. J Am Chem Soc, 2013, 135(19): 7098?7101.
[31] HSU S W, ON K, TAO A R. Localized surface plasmon resonances of anisotropic semiconductor nanocrystals[J]. J Am Chem Soc, 2011, 133(47): 19072?19075.
[32] DORFS D, HARTLING T, MISZTA K, et al. Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals[J]. J Am Chem Soc, 2011, 133(29): 11175?11180.
[33] LLORENTE V B, DZHAGAN V M, GAPONIK N, et al. Electrochemical tuning of localized surface plasmon resonance in copper chalcogenide nanocrystals[J]. J Phys Chem C, 2017, 121(33): 18244?18253.
[34] LIU X, WANG X L, ZHOU B, et al. Size-controlled synthesis of Cu2?xE (E=S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films[J]. Adv Funct Mater, 2013, 23(10): 1256?1264.
[35] LIU X, LEE C, LAW W C, et al. Au-Cu2?xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging[J]. Nano Lett, 2013, 13(9): 4333?4339.
[36] ZHU Dewei, LIU Maixian, LIU Xin, et al. Au-Cu2?xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy[J]. J Mater Chem B, 2017, 5(25): 4934?4942.
[37] MANTHIRAM K, ALIVISATOS A P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals[J]. J Am Chem Soc, 2012, 134(9): 3995?3998.
[38] WEN L, CHEN L, ZHENG S, et al. Ultrasmall biocompatible WO3?x nanodots for multi-modality imaging and combined therapy of cancers[J]. Adv Mater, 2016, 28(25): 5072?5079.
[39] HUANG Q, HU S, ZHUANG J, et al. MoO3?x-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes[J]. Chem Eur J, 2012, 18(48): 15283?15287.
[40] CHENG H, QIAN X, KUWAHARA Y, et al. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions[J]. Adv Mater, 2015, 27(31): 4616?4621.
[41] ROWE D J, JEONG J S, MKHOYAN K A, et al. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance[J]. Nano Lett, 2013, 13(3): 1317?1322.
[42] KANEHARA M, KOIKE H, YOSHINAGA T, et al. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region[J]. J Am Chem Soc, 2009, 131(49): 17736?17737.
[43] GARCIA G, BUONSANTI R, RUNNERSTROM E L, et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals[J]. Nano Lett, 2011, 11(10): 4415?4420.
[44] GU Y, ZHU Z, SONG J, et al. Triangle-, tripod-, and tetrapod-branched ITO nanocrystals for anisotropic infrared plasmonics[J]. Nanoscale, 2017, 9(48): 19374?19383.
[45] BUONSANTI R, LLORDES A, ALONI S, et al. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals[J]. Nano Lett, 2011, 11(11): 4706?4710.
[46] ZUM FELDE U, HAASE M, WELLER H. Electrochromism of highly doped nanocrystalline SnO2:Sb[J]. J Phys Chem B, 2000, 104(40): 9388?9395.
[47] LEE H Y, CAI Y, BI S, et al. A dual-responsive nanocomposite toward climate-adaptable solar modulation for energy-saving smart windows[J]. ACS Appl Mater Interface, 2017, 9(7): 6054?6063.
[48] GORDON T R, PAIK T, KLEIN D R, et al. Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO)[J]. Nano Lett, 2013, 13(6): 2857?2863.
[49] GORDON T R, CARGNELLO M, PAIK T, et al. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity[J]. J Am Chem Soc, 2012, 134(15): 6751?6761.
[50] DE TRIZIO L, BUONSANTI R, SCHIMPF A M, et al. Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption[J]. Chem Mater, 2013, 25(16): 3383?3390.
[51] MORIN F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Phys Rev Lett, 1959, 3(1): 34?36.
[52] RINI M, CAVALLERI A, SCHOENLEIN R W, et al. Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance[J]. Opt Lett, 2005, 30(5): 558?560.
[53] MOOT T, PALIN C, MITRAN S, et al. Designing plasmon-enhanced thermochromic films using a vanadium dioxide nanoparticle elastomeric composite[J]. Adv Opt Mater, 2016, 4(4): 578?583.
[54] BISWAS K, RAO C N R. Metallic ReO3 nanoparticles[J]. J Phys Chem B, 2006, 110(2): 842?845.
[55] QUINTEN M. The color of finely dispersed nanoparticles[J]. Appl Phys B, 2001, 73(4): 317?326.
[56] REINHOLDT A, PECENKA R, PINCHUK A, et al. Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles[J]. Eur Phys J D, 2004, 31(1): 69?76.
[57] ISHII S, SUGAVANESHWAR R P, NAGAO T. Titanium nitride nanoparticles as plasmonic solar heat transducers[J]. J Phys Chem C, 2016, 120(4): 2343?2348.
|