首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
提高钙钛矿结构锂离子导体晶界电导率的研究进展
作者:吕晓娟 杨东昱   韩云凤 
单位:华北电力大学(保定)环境科学与工程系 河北 保定 071000 
关键词:钙钛矿 锂离子导体 第二相 掺杂 晶界 
分类号:TB332
出版年,卷(期):页码:2018,46(10):0-0
DOI:10.14062/j.issn.0454-5648.2018.10.10
摘要:

 多晶材料的锂离子传导是由晶界和晶粒共同决定的,而晶界部分固有的大电阻造成了总电导率较低。综述了提高晶

界电导率的研究进展,包括结构改性,A 位和B 位的掺杂,添加绝缘的第二相以及掺杂锂离子传导材料。通过对已有研究成
果的综述发现:锂离子的浓度,锂离子的移动性和A 位空位比晶界的数量对总电导率的影响更大,掺杂其他元素到A 位和B
位也有一定的效果;添加绝缘的第二相的效果受到其他因素如制备方法的影响而呈现较大的差异性;添加像Li7La3Zr2O12,
Li2O-B2O3 和Li3PO4 锂离子传导材料可以提高总电导率。最后对今后的发展方向作出了展望。

 Lithium conductivity in polycrystalline materials is determined by the grains and grain boundaries. An intrinsically large

grain-boundary resistance results in a low total conductivity. This review represents recent work on the improvement of
grain-boundary conductivity in terms of structural modification, doping A and B sites, incorporating inactive second phases and
lithium-ion conducting materials. The concentration of Li ions and the mobility of Li+ and A-site vacancies have dominant effects on
the conductivity, compared to the grain boundary volume. Doping A and B sites with other elements are also effective. The
effectiveness of incorporating an inactive second phase is compromised by some factors like the preparation methods. Lithium
conducting materials, such as Li7La3Zr2O12, Li2O-B2O3 and Li3PO4, can improve the total conductivity. In addition, the prospects and
future direction for improving grain-boundary conductivity were also discussed.
基金项目:
作者简介:
参考文献:

 [1] YI T F, YANG S Y, TAO M, et al. Synthesis and application of a novel Li4Ti5O12 composite as anode material with enhanced fast charge-discharge performance for lithium-ion battery[J]. Electrochim Acta, 2014, 134: 377–383. 

[2] TANG H, XU J. Enhanced electrochemical performance of LiFePO4 coated with Li0.34La0.51TiO2.94 by rheological phase reaction method[J]. Mater Sci Eng B, 2013, 178: 1503–1508.
[3] BOHNKE O. The fast lithium-ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application[J]. Solid State Ionics, 2008, 179: 9–15.
[4] KANUTH P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, 2009, 180: 911–916.
[5] UHLMANN C, BRAUN P, ILLIG J, et al. Interface and grain boundary resistance of a lithium lanthanum titanate (Li3xLa2/3-xTiO3, LLTO) solid electrolyte[J]. J Power Sources, 2016, 307: 578–586.
[6] STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanum titanates: A review[J]. Chem Mater, 2003, 15: 3974–3990.
[7] HUANG F, LIU W, LI P, et al. Electrochemical properties of LLTO/fluoropolymer-shell cellulose-core fibrous membrane for separator of high performance lithium-ion battery[J]. Materials, 2016, 9: 75–86.
[8] ZHENG Z, SONG S, WANG Y. Sol-gel-processed amorphous lithium ion electrolyte thin films: Structural evolution, theoretical considerations, and ion transport processes[J]. Solid State Ionics, 2016, 287: 60–70.
[9] INAGUMA Y, CHEN L Q, ITOH M, et al. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Commun, 1993, 86: 689–693. 
[10] GAO X, FISHER A J, KIMURA T, et al. Lithium atom and a–site vacancy distributions in lanthanum lithium titanate[J]. Chem Mater, 2013, 25: 1607–1614.
[11] MORIWAKE H, GAO X, KUWABARA A, FISHER A J, et al. Domain boundaries and their influence on Li migration in solid-state electrolyte (La, Li)TiO3[J]. J Power Sources, 2015, 276: 203–207.
[12] INAGUMA Y, NAKASHIM M. A rechargeable lithium air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator[J]. J Power Sources, 2013, 228: 250–255.
[13] GENG H X, MEI A, DONG C, et al. Investigation of structure and electrical properties of Li0.5La0.5TiO3 ceramics via microwave sintering[J]. J Alloy Compd, 2009, 481: 555–558.
[14] GENG H, LAN J, MEI A, et al. Effect of sintering temperature on microstructure and transport properties of Li3xLa2/3−xTiO3 with different lithium contents[J]. Electrochim Acta, 2011, 56: 3406–3414.
[15] YANG T, LI Y, CHAN C K. Enhanced lithium ion conductivity in lithium lanthanum titanate solid electrolyte nanowires prepared by electrospinning[J]. J Power Sources, 2015, 287: 164–169.
[16] ABHILASH K P, SELVIN P C, NALINI B, et al. Study of the temperature dependent transport properties in nanocrystalline lithium lanthanum titanate for lithium ion batteries[J]. J Phys Chem Solids, 2016, 91: 114–121.
[17] LE H T T, KALUBARME R S, NGO D T, et al. Citrate gel synthesis of aluminum-doped lithium lanthanum titanate solid electrolyte for application in organic-type lithium-oxygen batteries[J]. J Power Sources, 2015, 274: 1188–1199.
[18] TRONG L D, THAO T T, DINH N N. Characterization of the Li-ionic conductivity of La(2/3−x)Li3xTiO3 ceramics used for all-solid-state batteries[J]. Solid State Ionics, 2015, 278: 228–232.
[19] GENG H, MEI A, LIN Y, et al. Effect of sintering atmosphere on ionic conduction and structure of Li0.5La0.5TiO3 solid electrolytes[J]. Mater Sci Eng B, 2009, 164: 91–95.
[20] KWON W J, KIM H, JUNG K N, et al. Enhanced Li+ conduction in perovskite Li3xLa2/3-x□1/3-2xTiO3 solid-electrolyte via Microstructural Engineering[J]. J Mater Chem A, 2017, 5: 6257–6262.
[21] ROMERO M, FACCIO R, VAZQUEZ S, et al. Experimental and theoretical Raman study on the structure and microstructure of Li0.30La0.57TiO3 electrolyte prepared by the sol-gel method in acetic medium [J]. Ceram Int, 2016, 42: 15414–15422.
[22] XIONG Y, TAO H, ZHAO J, et al. Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering[J]. J Alloy Compd, 2011, 509: 1910–1914.
[23] TERANISHI T, YAMAMOTO M, HAYASHI H, et al. Lithium ion conductivity of Nd-doped (Li, La)TiO3 ceramics[J]. Solid State Ionics, 2013, 243: 18–21.
[24] WANG G, YAO P, BRADHURST D. Structure characteristics and lithium ionic conductivity of La(0.57−2x/3)SrxLi0.3TiO3 perovskites[J]. J Mater Sci, 2000, 35: 4289–4291.
[25] ABHILASH K P, SELVIN P C, NALINI B, et al. Investigations on pure and Ag doped lithium lanthanum titanate (LLTO) nanocrystalline ceramic electrolytes for rechargeable lithium-ion batteries[J]. Ceram Int, 2013, 39: 947–952.
[26] ZHANG H, LIU X, QI Y, et al. On the La2/3-xLi3xTiO3/Al2O3 composite solid-electrolyte for Li-ion conduction[J]. J Alloy Compd, 2013, 577: 57–63.
[27] DENG Y, SHANG S J, MEI A, et al. The preparation and conductivity properties of Li0.5La0.5TiO3/inactive second phase composites[J]. J Alloy Compd, 2009, 472: 456–460.
[28] LINEVA B A, KOBYLYANSKAYA S D, KOVALENKO L L, et al. Effect of impurities on the electrical properties of the defect perovskite Li0.33La0.57TiO3[J]. Inorg Mater, 2017, 53: 326–332.
[29] CHEN K, HUANG M, SHEN Y, et al. Enhancing ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12[J]. Electrochim Acta, 2012, 80: 133–139.
[30] CHEN K, HUANG M, SHEN Y, et al. Improving ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12 sol into the precursor powder[J]. Solid State Ionics, 2013, 235: 8–13.
[31] NONG J, XU H, YU Z, et al. Properties and preparation of Li–La–Ti–Zr–O thin film electrolyte[J]. Mater Lett, 2015, 154: 167–169.
[32] ZHANG H, HAO S, LIN J. Influence of Li2O–B2O3 glass on ionic migration and interfacial properties of La2/3-xLi3xTiO3 solid electrolyte[J]. J Alloy Compd, 2017, 704: 109–116.
[33] MAIER J. Ionic-conduction in space charge regions[J]. Prog Solid State Chem, 1995, 23: 171–263.
[34] YANG K Y, WANG J W, FUNG K Z. Roles of lithium ions and La/Li-site vacancies in sinterability and total ionic conduction properties of polycrystalline Li3xLa2/3−xTiO3 solid electrolytes (0.21 ≤ 3x ≤ 0.50)[J]. J Alloy Compd, 2008, 458: 415–424.
[35] ONISHI H, TAKAI S, YABUTSUKA T, et al. Synthesis and electrochemical properties of LATP-LLTO lithium ion conductive composites[J]. Electrochemistry, 2016, 84: 967–970.
[36] ROMERO M, FACCIO R, VAZQUEZ S, et al. Enhancement of lithium conductivity and evidence of lithium dissociation for LLTO-PMMA nanocomposite electrolyte[J]. Mater Lett, 2016, 172: 1–5.
[37] LE H T T, NGO D T, KALUBARME R S, et al. Composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with modified aluminum-doped lithium lanthanum titanate (A-LLTO) for high-performance lithium rechargeable batteries[J]. ACS Appl Mater Int, 2016, 8: 20710–20719.
[38] LIANG Y Z, JI L W, GUO B K, et al. Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators[J]. J Power Sources 2011, 196: 436–441.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com