首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
ZnO/SnS2 复合物的NO2 气敏性能
作者:赵晓华1 2  帅1  崇1 王晓兵1 李彩珠1  燕1 娄向东1 
单位:1. 河南师范大学化学化工学院 绿色化学介质与反应教育部重点实验室 河南 新乡 453007  2. 河南师范大学环境学院 黄淮水环境与污染防治教育部重点实验室 河南省环境污染控制重点实验室  环境功能材料与污染控制河南省工程实验室 河南 新乡 453007 
关键词:氧化锌/二硫化锡复合物 异质结 二氧化氮气体 气敏性能 
分类号:O649
出版年,卷(期):页码:2018,46(10):0-0
DOI:10.14062/j.issn.0454-5648.2018.10.11
摘要:

 采用沉淀法合成了具有NO2 气敏性能的ZnO/SnS2 系列复合物。利用X 射线衍射仪、场发射扫描电子显微镜及透射

电子显微镜等测试手段对ZnO/SnS2 系列复合物进行了表征,采用静态配气法对其气敏性能进行了测试,研究了ZnO 含量、
工作温度、NO2 浓度等对NO2 气敏特性的影响。结果表明:加入质量分数为1%和2%的ZnO,可以有效提高SnS2 的气敏性
能,其中1%ZnO/SnS2 样品对NO2 气体的灵敏度最高,相对于Cl2、SO2 等其他7 种测试气体,该样品对NO2 气体具有更高
的响应,其对体积浓度10×10?6 的NO2 气体响应和恢复时间分别仅需7 s 和49 s。这主要是由于ZnO 与SnS2 之间形成异质结,
有效增加了电子流动所致。

 The ZnO/SnS2 composites were synthesized by a precipitation method, which were sensitive to NO2 gas. The samples were

characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and
room-temperature fluorescence spectrometry, respectively. The gas sensing properties of samples were tested by a static gas
distribution method. The results show that the gas sensitivity of SnS2 to NO2 can be effectively improved by adding the mass fractions
of 1% and 2% ZnO. In the synthesized samples, the sample with 1%ZnO/SnS2 has the maximum sensitivity to NO2 gas and a higher
response to NO2 gas among seven kinds of tested gases like Cl2 and SO2. Moreover, its response time and recovery time to 10×10?6
NO2 gas are only 7 s and 49 s, respectively. This can be attributed to the formation of heterojunction between ZnO and SnS2, which
can increase the flow of electrons.
基金项目:
作者简介:
参考文献:

 [1] GU D, LI X, ZHAO Y, et al. Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor[J]. Sens Actuators B, 2017, 244: 67?76. 

[2] SHENDAGE S S, PATIL V L, VANALAKAR S A, et al. Sensitive and selective NO2 gas sensor based on WO3 nanoplates[J]. Sens Actuators B, 2017, 240: 426?433.
[3] WANG Z, FAN X, HAN D, et al. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance[J]. Nanoscale, 2016, 8: 10622?10631.
[4] BAO M, CHEN Y, LI F, et al. Plate-like p-n heterogeneous NiO/WO3 nanocomposites for high performance room temperature NO2 sensors[J]. Nanoscale, 2014, 6: 4063?4066.
[5] OU J Z, GE W, CAREY B, et al. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing[J]. ACS Nano, 2015, 9: 10313?10323.
[6] CUI S, WEN Z, HUANG X, et al. Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air[J]. Small, 2015, 11: 2305?2313.
[7] XU K, LI N, ZENG D, et al. Interface bonds determined gas-sensing of SnO2-SnS2 hybrids to ammonia at room temperature[J]. ACS Appl Mater Int, 2015, 7: 11359?11368.
[8] MILLER D R, AKBAR S A, MORRIS P A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review[J]. Sens Actuators B, 2014, 204: 250?272.
[9] 郭学海, 潘国峰, 李祥州, 等. Al2O3掺杂ZnO基高选择性丙酮气体传感器[J]. 硅酸盐学报, 2017, 45: 106?112.
GUO Xuehai, PAN Guofeng, LI Xiangzhou, et al. J Chin Ceram Soc, 2017, 45: 106?112.
[10] FAN K, GUO J, CHA L, et al. Atomic layer deposition of ZnO onto Fe2O3 nanoplates for enhanced H2S sensing[J]. J Alloy Compd, 2017, 698: 336?340.
[11] DENG X, ZHANG L, GUO J, et al. ZnO enhanced NiO-based gas sensors towards ethanol [J]. Mater Res Bull, 2017, 90: 170?174.
[12] 李彩珠, 赵晓华, 李珍珍, 等. 可控合成具有Cl2气敏性能的不同形貌ZnO[J]. 硅酸盐学报, 2016, 44: 159?165.
LI Caizhu, ZHAO Xiaohua, LI Zhenzhen, et al. J Chin Ceram Soc, 2016, 44: 159?165.
[13] PRAJAPATI C S, VISSER D, ANAND S, et al. Honeycomb type ZnO nanostructures for sensitive and selective CO detection[J]. Sens Actuators B, 2017, 252: 764?772.
[14] GAO L, CHENG Z, XIANG Q, et al. Porous corundum-type In2O3 nanosheets: Synthesis and NO2 sensing properties[J]. Sens Actuators B, 2015, 208: 436?443.
[15] ZHAO X, SU S, WU G, et al. Facile synthesis of the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres with enhanced photocatalytic performance[J]. Appl Surf Sci, 2017, 406: 254?264.
[16] KHAN Z, PARVEEN N, ANSARI S A, et al. Three-dimensional SnS2 nanopetals for hybrid sodium-air batteries[J]. Electrochim Acta, 2017, 257: 328?334.
[17] FAGERIA P, GANGOPADHYAY S, PANDE S. Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light[J]. RSC Adv, 2014, 4: 24962?24972.
[18] SHEN Y, WANG W, CHEN X, et al. Nitrogen dioxide sensing using tungsten oxide microspheres with hierarchical nanorod-assembled architectures by a complexing surfactant-mediated hydrothermal route[J]. J Mater Chem A, 2016, 4: 1345?1352.
[19] DIAO K, HUANG Y, ZHOU M, et al. Selectively enhanced sensing performance for oxidizing gases based on ZnO nanoparticle-loaded electrospun SnO2 nanotube heterostructures[J]. RSC Adv, 2016, 6: 28419?28427.
[20] LI F, CHEN Y, MA J. Porous SnO2 nanoplates for highly sensitive NO detection[J]. J Mater Chem A, 2014, 2: 7175?7178.
[21] CHA J H, CHOI S J, YU S, et al. 2D WS2-edge functionalized multi-channel carbon nanofibers: effect of WS2 edge-abundant structure on room temperature NO2 sensing[J]. J Mater Chem A, 2017, 5: 8725?8732.
[22] CHO S Y, KIM S J, LEE Y H, et al. Highly enhanced gas adsorption properties in vertically aligned MoS2 layers[J]. Acs Nano, 2015, 9: 9314–9321.
[23] ZOU C, LIANG F, XUE S. Synthesis and oxygen vacancy related NO2 gas sensing properties of ZnO:Co nanorods arrays gown by a hydrothermal method[J]. Appl Surf Sci, 2015, 353: 1061?1069.
[24] ANSARI S A, KHAN M M, ANSARI M O, et al. Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite[J]. J Phys Chem C, 2013, 117: 27023?27030.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com