首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
羟基磷灰石/膨润土复合材料对水中Cd2+吸附研究
作者: 国1 2 3 徐丽莎1 2 3 李知可1 2 3 黄琴琴1 2 3 谢珍雯1 2 3 许小芳1 2 3 
单位:1. 成都理工大学 地质灾害防治与地质环境保护国家重点实验 成都 610059  2. 环保部水土协同控制与联合修复重点实验室 成都 610059  3. 成都理工大学环境学院 成都 610059 
关键词:共沉淀法 羟基磷灰石 膨润土 吸附机理  
分类号:TB33
出版年,卷(期):页码:2018,46(10):0-0
DOI:10.14062/j.issn.0454-5648.2018.10.13
摘要:

 采用共沉淀法制备羟基磷灰石/膨润土(HA/B)复合材料,用于去除水溶液中Cd2+。探究了合成时温度、膨润土投

加量、Ca2+与PO4
3–浓度、高温灼烧对吸附的影响。研究了吸附动力学及热力学,分析了Cd2+的吸附机理,研究了pH、阴
离子对Cd2+吸附性能的影响以及与阳离子的竞争作用。结果表明,羟基磷灰石成功地负载在膨润土表面;最佳制备条件为:
制备温度30 ℃,羟基磷灰石与膨润土的最佳配比为1:1,Ca(NO3)2 的浓度为8.23 g/L,高温灼烧不利于材料的吸附;伪二
级动力学模型和Langmuir 等温模型能很好地描述Cd2+在HA/B 上的吸附,表明吸附以化学吸附为主;热力学表明该吸附
是自发的、吸热的过程;F–促进吸附,Cl–抑制吸附,Cu2+、Ca2+、Pb2+、NH4
+对Cd2+吸附的干扰大小顺序为:Cu2+>Pb2+
>Ca2+>NH4
+。

 A Composite material, of hydroxyapatite/bentonite(HA/B) for the removal of Cd2+ in aqueous solution was prepared by a

coprecipitation method. The effects of temperature, bentonite dosage, Ca2+ concentration, PO4
3– concentration and high-temperature
burning on the composites were investigated. The adsorption kinetics and thermodynamics were analyzed. The adsorption mechanism
of Cd2+ in HA/B adsorption solution was discussed. The effects of pH value and anion on the adsorption performance were evaluated.
The competition between Cd2+ and other cations was also analyzed. The results show that hydroxyapatite can be loaded on the surface
of bentonite. The superior results can be obtained under optimal preparation conditions (i.e. the temperature of 30 ℃, the ratio of
hydroxyapatite to bentonite of 1:1, the concentration of Ca(NO3)2 of 8.23 g/L). High-temperature burning is inconducive to the
adsorption of materials. The adsorption behavior of Cd2+ onto HA/B follows the pseudo-second-order kinetics model and the
Langmuir isotherm model, respectively. It is indicated that the adsorption belongs to chemical adsorption. Based on the
thermodynamics analysis, the adsorption is a spontaneous and endothermic process. F– promotes adsorption and Cl– inhibits the
adsorption. The interference order of the cation on Cd2+ adsorption is Cu2+>Pb2+>Ca2+>NH4
+.
基金项目:
作者简介:
参考文献:
 [1]    MATA Y N, BLÁZQUEZ M L, BALLESTER A, et al. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus[J]. J Hazardous Mater, 2009, 163(2/3): 555–562.
[2]    马锋锋, 赵保卫, 刁静茹. 小麦秸秆生物炭对水中Cd~(2+)的吸附特性研究[J]. 中国环境科学, 2017(02): 551–559.
MA Fengfeng, ZHAO Baowei, DIAO Jingru. China Environ Sci (in Chinese), 2017(02): 551–559.
[3]    PÉREZ-MARÍN A B, ZAPATA V M, O J O, et al. Removal of cadmium from aqueous solutions by adsorption onto orange waste[J]. J  Hazard Mater, 2007, 139(1): 122–131.
[4]    MELIDIS P. Fluoride removal from aluminium finishing wastewater by hydroxyapatite[J]. Environ Process, 2015, 2(1): 205–213.
[5]    YAKUB I, SOBOYEJO W. Adsorption of fluoride from water using sintered clay-hydroxyapatite composites[J]. J Environ Eng, 2013, 139(7): 995–1003.
[6]    SMI?IKLAS I, ONJIA A, RAI?EVI? S, et al. Factors influencing the removal of divalent cations by hydroxyapatite[J]. J Hazard Mater, 2008, 152(2): 876–884.
[7]    唐文清, 曾荣英, 冯泳兰, 等. 合成碳羟基磷灰石对水中双酚A的吸附性能研究[J]. 环境工程学报, 2009(11): 1961–1964.
TANG Wenqing, ZENG Rongying, FENG Yonglan, et al. Chin J Environ Eng (in Chinese), 2009(11): 1961–1964.
[8]    王莉丽, 王秀峰, 丁旭, 等. 纳米棒状羟基磷灰石的研究进展[J]. 材料导报, 2012(21): 80–82.
WANG Lili, WANG Xiufeng, DING Xu, et al. Meter Rev (in Chinese), 2012(21): 80–82.
[9]    詹艳慧, 林建伟. 一种羟基磷灰石-改性沸石复合材料吸附剂及其制备方法和应用[P]. CN Patent, ZL201210003760.9. 2013–12–25.
ZHAN Yanhui, LIN Jianwei. A Hydroxyapatite modified zeolite composite adsorbent and preparation method and application thereof (in Chinese). ZL201210003760.9. 2013–12–25.
[10]  ERSAN M, GULER U A, KEL U A, et al. Synthesis of hydroxyapatite/clay and hydroxyapatite/pumice composites for tetracycline removal from aqueous solutions[J]. Process Saf Environ Prot, 2015, 96: 22–32.
[11]  曹明礼, 王慧娟, 雷云, 等. 改性膨润土对水溶液中Zn(Ⅱ)吸附作用研究[J]. 非金属矿, 2001(6): 45–46.
CAO Mingli, WANG Huijuan, LEI Yun, et al. Non-Metallic Mines (in Chinese), 2001(6): 45–46.
[12]  张超武, 李娟莹. 共沉淀法制备羟基磷灰石影响因素的研究[J]. 材料导报, 2006(20): 390–392.
ZHANG Chaowu, LI Juanying. Meter Rev (in Chinese), 2006(f11): 390–392.
[13]  郭连峰, 张文光, 王成焘. 纳米羟基磷灰石的制备及结晶尺寸的控制[J]. 无机化学学报, 2004(03): 291–296.
GUO Lianfeng, ZHANG Wenguang, WANG Chengtao. J Inorg Chem (in Chinese), 2004(03): 291–296. 
[14]  郝军, 石玉龙. 溶胶-凝胶法制备羟基磷灰石粉体[J]. 青岛科技大学学报(自然科学版), 2010, 31(2): 53–56.
HAO Jun, SHI Yunlong. J Qingdao Univ Sci Technol: Nat Sci (in Chinese), 2010, 31(2): 53–56.
[15]  WANG X, MIN B G. Cadmium sorption properties of poly(vinyl alcohol)/hydroxyapatite cryogels: II.Effects of operating parameters[J]. J Sol-Gel Sci Technol, 2008, 45(1): 17–22.
[16]  DONG L J, ZHU Z L, QIU Y L, et al. Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent[J]. Chem Eng J, 2010, 165: 827–834.
[17]  ELKADY M F, MAHMOUD M M, ABD-EL-RAHMAN H M. Kinetic approach for cadmium sorption using microwave synthesized nano-hydroxyapatite[J].J Non-Crystall Solids, 2011, 357: 1118–1129.
[18]  MOBASHERPOUR I, SALAHI E, PAZOUKI M. Removal of divalent cadmium cations by means of synthetic nano crystallite hydroxyapatite[J]. Desalination, 2011, 266: 142–148.
[19]  FENG Y, GONG J, ZENG G, et al. Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents[J]. Chem Eng J, 2010, 162(2): 487–494.
[20]  VILA M, SÁNCHEZSALCEDO S, CICUÉNDEZ M, et al. Novel biopolymer-coated hydroxyapatite foams for removing heavy-metals from polluted water.[J]. J Hazardous Mater, 2011, 192: 71–77.
[21]  ZHU X, LI J, LUO J, et al. Removal of cadmium (II) from aqueous solution by a new adsorbent of fluor-hydroxyapatite composites[J]. J Taiwan Inst Chem Eng, 2017, 70: 200–208.
[22]  ROGINA A, IVANKOVI? M, IVANKOVI? H. Preparation and characterization of nano-hydroxyapatite within chitosan matrix[J]. Mater Sci Eng C, 2013, 33(8): 4539–4544.
[23]  DEVI N, DUTTA J. Preparation and characterization of chitosan-bentonite nanocomposite films for wound healing application[J]. Int J Biolog Macromol, 2017, 104: 1897–1904.
[24]  NAYAK B, SAMANT A, PATEL R, et al. Comprehensive understanding of the kinetics and mechanism of fluoride removal over a potent nanocrystalline hydroxyapatite surface[J]. ACS Omega, 2017, 2(11): 8118–8128.
[25]  PHAN B T N, NGUYEN H T, ?AO H Q, et al. Synthesis and characterization of nano-hydroxyapatite in maltodextrin matrix[J]. Appl Nanosci, 2017, 7(1/2): 1–7.
[26]  ANIRUDHAN T S, JALAJAMONY S, SUCHITHRA P S. Improved performance of a cellulose-based anion exchanger with tertiary amine functionality for the adsorption of chromium(VI) from aqueous solutions[J]. Colloids Surf A: Physicochem Eng Asp, 2009, 335(1/3): 107–113.
[27]  SRIVASTAVA V, WENG C H, SINGH V K, et al. Adsorption of nickel Ions from aqueous solutions by nano Alumina: Kinetic, mass transfer, and equilibrium studies[J]. J Chem Eng Data, 2011, 56(4): 1414–1422.
[28]  MACEDO T R, AIROLDI C. Host lamellar silicic acid magadiite for some heterocyclic amine inclusions and quantitative calorimetric data[J]. Micropor Mesopor Mater, 2006, 94(1/3): 81–88.
[29]  MOHAN S, KUMAR V, SINGH D K, et al. Effective removal of lead ions using graphene oxide-MgO nanohybrid from aqueous solution:Isotherm, kinetic and thermodynamic modeling of adsorption[J]. J Environ Chem Eng, 2017, 5(3): 2259–2273.
[30]  KHAN T A, CHAUDHRY S A, ALI I. Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution[J]. J Mol Liq, 2015, 202: 165–175.
[31]  SADEGHALVAD B, AZADMEHR A R, MOTEVALIAN H. Statistical design and kinetic and thermodynamic studies of Ni(II) adsorption on bentonite[J]. J Central South Univ, 2017, 24(7): 1529–1536.
[32]  YI X S, ZHAO Z W, SHI W X, et al. Organic pollutants variation and antifouling enhancement with attapulgite clay addition in MBR treating micro-polluted surface water[J]. Chem Eng J, 2013, 223: 891–898.
[33]  KUL A R, KOYUNCU H. Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: Kinetic, equilibrium and thermodynamic study[J]. J Hazard Mater, 2010, 179(1/3): 332–339.
[34]  郭佳丽, 韩颖超, 徐磊, 等. 纳米羟基磷灰石复合材料作为污水处理吸附剂的研究进展[J]. 硅酸盐通报, 2016(8): 2466–2475.
GUO Jiali, HAN Yingchao, XU Lei, et al. Bull Chin Ceram Soc (in Chinese), 2016(8): 2466–2475.
[35]  GÓMEZ DEL RI?O J A, MORANDO P J, CICERONE D S. Natural materials for treatment of industrial effluents: comparative study of the retention of Cd, Zn and Co by calcite and hydroxyapatite. Part I: batch experiments[J]. J Environ Manage, 2004, 71(2): 169–177.
[36]  BOGYA E S, CZIKÓ M, BARABÁS R, et al. Influence of synthesis method of nano-hydroxyapatite-based materials on cadmium sorption processes[J]. J Iranian Chem Soc, 2014, 11(1): 53–68.
[37]  董晓丽, 孙晓蕾, 严玉波, 等. 脱硫石膏基羟基磷灰石对Cu2+吸附性能的研究[J]. 中国环境科学, 2014, 34(8): 2040–2048.
DONG Xiaoli,SUN Xiaolei,YAN Yubo, et al. China Environ Sci (in Chinese), 2014, 34(8): 2040–2048.
[38]  KADIRVELU K, KAVIPRIYA M, KARTHIKA C, et al. Mercury (II) adsorption by activated carbon made from sago waste[J]. Carbon, 2004, 42(4): 745–752.
[39]  戴树桂. 环境化学[M]. 北京: 高等教育出版社, 2006: 184–187.
[40]  ANSARI M I, MALIK A. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater[J]. Bioresource Technol, 2007, 98(16): 3149–3153.
[41]  余德才, 曹文娟, 吴海玉, 等. 离子半径的质量和电量综合因子的标度[J]. 物理化学学报, 2007(5): 683–687.
YU Decai, CAO Wenjuan, WU Haiyu, et al. Chin J Chem Phys (in Chinese), 2007(5): 683–687.
[42]  武汉大学[s.n]. 分析化学[M]. 北京: 高等教育出版社, 1998: 172–174.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com