首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
氧化锆瓷珠对麦羟硅钠石结晶的影响
作者:戈明亮1 2 曹罗香1 杜明艺1 王雁武1 梁国栋2 
单位:1. 华南理工大学 聚合物成型加工工程教育部重点实验室 聚合物新型成型装备国家工程研究中心 广州 510640  2. 中山大学 聚合物复合材料及功能材料教育部重点实验室 广州 510275 
关键词:麦羟硅钠石 异相成核 瓷珠 合成机理 
分类号:O643
出版年,卷(期):页码:2018,46(10):0-0
DOI:10.14062/j.issn.0454-5648.2018.10.18
摘要:

 以瓷珠表面作为晶化的成核介质,通过水热晶化法合成了麦羟硅钠石。分别研究了无瓷珠时和有瓷珠时,麦羟硅钠

石晶化过程的形态演变及成核机理。结果表明:瓷珠表面对麦羟硅钠石的晶化过程有异相成核作用,形成了不同的中间态,
缩短了晶化时间。无瓷珠时,晶化过程中无定型SiO2 团状物先从中间晶化成层片状晶体,再向边缘拓展,最终形成玫瑰花瓣
状层片状麦羟硅钠石晶体;当加入瓷珠时,晶化过程中无定型SiO2 团状物先在瓷珠表面的不同点逐渐形成多个片状物,片状
物上继续晶化,形成片状物且层层紧密叠加,最后进一步晶化形成玫瑰花瓣状麦羟硅钠石晶体。

 Magadiite was prepared by a hydrothermal synthesis method when zirconia ceramic beads were used as an inorganic

nucleating medium in the crystallization process. The morphological evolution and synthesis mechanism of magadiite without and
with the inorganic nucleating medium were discussed. The results show that the ceramic beads as the medium have a heterogeneous
nucleation effect, leading to an intermediate state during the crystallization of magadiite and shortening the crystallization time. In the
absence of the ceramic beads, the lamellar crystals of amorphous SiO2 from the middle to the edge are formed, and finally magadiite
with rose petals-like lamellar crystals is obtained. In the presence of the ceramic beads, the platelets of amorphous SiO2 are firstly
crystallized on the bead surface, and then the flaky objects are grown in platelets, stacked tightly and finally crystallized to magadiite.
基金项目:
作者简介:
参考文献:

 [1]    EUGSTER H P. Hydrous Sodium silicates from lake magadi, kenya: Precursors of bedded chert[J]. Science, 1967, 157(3793): 1177?1180.

[2]    DIETZEL M, LETOFSKYPAPST I. Stability of magadiite between 20 and 100 °C[J]. Clays Clay Miner, 2002, 50(5): 657?666.

[3]    WANG D Y, JIANG D D, PABST J, et al. Polystyrene magadiite nanocomposites[J]. Polym Eng Sci, 2004, 44(6): 1122?1131.

[4]    戈明亮, 杜明艺, 王雁武. 介孔材料麦羟硅钠石吸附Pb2+的行为及机理[J]. 硅酸盐学报, 2017, 45(1): 37?45.
GE Mingliang, DU Mingyi, WANG Yanwu. J Chin Ceram Soc, 2017, 45(1): 37?45.

[5]    ZHANG Z, SUREE SAENGKERDSUB A, DAI S. Intersurface ion-imprinting synthesis on layered magadiite hosts[J]. Chem Mater, 2003, 15(15): 2921?2925.

[6]    戈明亮, 王雁武, 陈萌. 麦羟硅钠石对水中Zn2+的吸附性能研究[J]. 中国环境科学, 2015, (7): 2065?2071.
GE Mingliang, WANG Yanwu, CHEN Meng.
China Environ Sci (in Chinese), 2015, (7): 2065?2071.

[7]    IDE Y, KAGAWA N, ITAKURA M, et al. Effective and selective bisphenol A synthesis on a layered silicate with spatially arranged sulfonic acid[J]. ACS Appl Mater Interface, 2012, 4(4): 2186?2191.

[8]    JEONG S Y, LEE J M. Removal of heavy metal ions from aqueous solutions by adsorption on magadiite[J]. Bull Korean Chem Soc, 1998, 19(2): 218?222.

[9]    ISODA K, KURODA K. Interlamellar Grafting of γ-methacryloxypropylsilyl groups on magadiite and copolymerization with methyl methacrylate[J]. Chem Mater, 2005, 17: 3717?3722.

[10]  MIZUKAMI N, TSUJIMURA M, KURODA K, et al. Preparation and characterization of Eu-Magadiite intercalation compounds[J]. Clays Clay Miner, 2002, 50(50): 799?806.

[11]  LAGALY G, BENEKE K. Magadiite and H-Magadiite: H-magadiite and its intercalation compounds[J]. Am Miner, 1975, 60: 650?658.

[12]  戈明亮, 陈萌. 麦羟硅钠石的制备与表征[J]. 硅酸盐学报, 2013, 41(12): 1704?1708.
GE Mingliang, CHEN Meng. J Chin Ceram Soc, 2013, 41(12): 1704?1708.

[13]  SUGAHARA Y, SUGIMOTO K I, YANAGISAWA T, et al. The preparation of a magadiite-polyacrylonitrile intercalation compound and its conversion to silicon carbide[J]. Yogyo-Kyokai-Shi, 1987, 95(1097): 127?133.

[14]  KWON O Y, CHOI S W. Silica-PIllared H-kenyaites: Interlamellar base catalyzed-reaction of tetraethylorthosilicate in water suspension[J]. Bull Korean Chem Soc, 1999, 20(1): 69?75.

[15]  KWON O Y, PARK K W. Synthesis of layered silicates from sodium silicate solution[J]. Bull Korean Chem Soc, 2004, 25(1): 25?26.

[16]  WANG Y R, WANG S F, CHANG L C. Hydrothermal synthesis of magadiite[J]. Appl Clay Sci, 2006, 33(1): 73?77.

[17]  FENG F, JR K J B. Direct synthesis of ZSM-5 and mordenite using poly(ethylene glycol) as a structure-directing agent[J]. J Porous Mater, 2003, 10(4): 235?242.

[18]  BI Y, BLANCHARD J, LAMBERT J F, et al. Role of the Al source in the synthesis of aluminum magadiite[J]. Appl Clay Sci, 2012, 57(57): 71–78.

[19]  WANG S F, LIN M L, SHIEH Y N, et al. Organic modification of synthesized clay-magadiite[J]. Ceram Int, 2007, 33(4): 681?685.

[20]  KWON O Y, JEONG S Y, SUH J K, et al. Hydrothermal syntheses of Na-magadiite and Na-kenyaite in the presence of carbonate[J]. Bull Korean Chem Soc, 1995, 16(8): 737?741.

[21]  MOURA H M, BONK F A, VINHAS R C G, et al. Aluminium-magadiite: From crystallization studies to a multifunctional material[J]. Crystengcomm, 2011, 13(17): 5428?5438.

[22]  樊先平. 无机非金属材料科学基础[M]. 浙江: 浙江大学出版社, 2004: 281?282.

[23]    SALOU M, KOOLI F, KIYOZUMI Y, et al. Effect of aluminium source and content on the synthesis of zeolite ZSM-5 from kanemite via solid-state transformation[J]. J Mater Chem, 2001, 11(5): 1476?1481.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com