首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
蛋白土的硫酸铵煅烧-水洗除杂增白效果与机理
作者:刘阳钰 李铭哲 潘永泰 郑水林 孙志明 贾宏伟 
单位:中国矿业大学 (北京) 化学与环境工程学院 北京 100083 
关键词:蛋白土 煅烧 水洗 白度 物相 孔结构 
分类号:X754
出版年,卷(期):页码:2018,46(10):0-0
DOI:10.14062/j.issn.0454-5648.2018.10.19
摘要:

 蛋白土具有良好的应用前景,但是其自然白度较低制约了其开发应用。研究了蛋白土原矿、预煅烧蛋白土、硫酸铵

煅烧样品、硫酸铵煅烧–水洗蛋白土的物相、化学成分及孔结构,并采用同步热分析与红外-质谱(TG-FTIR-MS)联用系统、结
合X 射线衍射对硫酸铵煅烧过程的固相及气相产物进行了表征。结果表明:500 ℃下,蛋白土杂质矿物中的Al2O3 和Fe2O3
与硫酸铵熔融电离出的SO4
2–、NH4
+及H+等反应生成了易溶于水的NH4(Al, Fe)(SO4)2,煅烧产物经水洗后去除其中的黏土矿
物杂质和染色矿物杂质Fe2O3,实现蛋白土的提纯增白。硫酸铵煅烧–水洗后的蛋白土不仅白度由原矿的22.1%提高到80.9%,
Fe2O3 的含量由原矿的2.54%下降到0.27%,而且其孔结构特性明显改善,比表面积和孔体积分别由原矿的71.7 cm2/g 和
0.129 cm3/g 提高到107.5 cm2/g 和0.233 cm3/g。

 Opoka has a good application prospect, but its natural whiteness is low, which restricts its development and application.

The phases, chemical compositions and pore structures of raw opoka, precalcined opoka, ammonium sulfate calcined opoka and
rinsed opoka were studied. The solid phase and gas phase products obtained from ammonium sulfate calcination process were
characterized by X-ray diffractometry and simultaneous thermogravimetry analyzer-Fourier transform infrared spectroscopy-mass
spectrometer (TG-FTIR-MS). The results show that the Al2O3 and Fe2O3 of opoka react with SO4
2–, NH4
+ and H+ that released by
ammonium sulfate melting to produce NH4(Al, Fe)(SO4)2 at 500 ℃, which is easy to dissolve in water. Then the calcined products are
rinsed to remove the clay mineral impurities and the dyed mineral impurities, Fe2O3, to achieve the purified and whitened opoka.
After being processed by ammonium sulfate calcining and water rinsing, the whiteness of raw opoka increased from 22.1% to 81.9%
and the content of Fe2O3 decreased from 2.54% to 0.21%. Moreover, the pore structure characteristics were improved; specific surface
area and pore volume were from the 71.7 cm2/g and 0.129 cm3/g increased to 107.5 cm2/g and 0.233 cm3/g respectively.
基金项目:
作者简介:
参考文献:

 [1]    BROGOWSKI Z, RENMAN G. Characterization of Opoka as a Basis for its Use in Wastewater Treatment[J]. Pol J Environ Stud, 2004,13(1): 15–20.

[2]    陈俊涛, 郑水林, 白春华. 蛋白土提纯对其理化性能的影响研究[J].人工晶体学报, 2009, 38(3): 792–796.
CHEN Juntao, ZHENG Shuilin, BAI Chunhua. J Synth Cryst (in Chinese), 2009, 38(3): 792796.

[3]    文明, 郑水林, 刘月, . 蛋白土/纳米二氧化钛复合材料的制备与应用研究[J]. 非金属矿, 2008, 31(6): 41–42.
WEN Ming, ZHENG Shuilin, LIU Yue, et al. Non-Met Mines (in Chinese), 2008, 31(6): 41–42.

[4]    任元成, 侯向群, 轩峰, . 新疆蛋白土超细加工及改性土应用研究[J]. 非金属矿, 2005, 28(6): 32–33.
REN Yuancheng, HOU Xiangqun, XUN Feng, et al. Non-Met Mines (in Chinese), 2005, 28(6): 32–33.

[5]    MOHAMAD W F, AHMAD F, ULLAH S. Effect of inorganic fillers on thermal performance and char morphology of intumescent fire retardant coating[J]. Asian J Sci Res, 2013, 6(2): 263–271.

[6]    刘阳钰, 李铭哲, 孙志明, . 蛋白土硫酸铵煅烧增白工艺研究[J].非金属矿, 2018, 41(01): 8–10.
LIU Yangyu, LI Mingzhe, SUN Zhiming, et al. Non-Met Mines (in Chinese), 2018, 41(01): 8–10.

[7]    谢武明, 楼匡宇, 张文治, . 高铁铝土矿的强化还原焙烧-磁选除铁[J].有色金属(选矿部分), 2016(1): 2630.
XIE Wuming, LOU Kuangyu, ZHANG Wenzhi, et al. Nonferrous Met (in Chinese), 2016(1): 26
30.

[8]    MOROSINI D F, BALTAR C A M, DUARTECOELHO A C. Iron removal by precipitate flotation[J]. Rem Revista Escola De Minas, 2014, 67(2): 203207.

[9]    董雄波, 刘姝抒, 孙志明, . 临江某硅藻土酸浸煅烧增白工艺试验研究[J]. 人工晶体学报, 2016, 45(9): 2279–2283.
DONG Xiongbo, LIU Shushu, SUN Zhiming, et al. J Synth Cryst (in Chinese), 2016, 45(9): 2279–2283.

[10]  SAERI M R, OTROJ S, SALEHI M H, et al. Refinement of low-grade kaolin by microbial removal of iron compounds[J]. Clay Res, 2016, 35(2): 16.

[11]  HOSSEINI M R, AHMADI A. Biological beneficiation of kaolin: A review on iron removal[J]. Appl Clay Sci, 2015, 107: 238–245.

[12]  PAPASSIOPI N, VAXEVANIDOU K, PASPALIARIS I. Effectiveness of iron reducing bacteria for the removal of iron from bauxite ores[J]. Miner Eng, 2010, 23(1): 25–31.

[13]  WANGNER D, DEVISME O, PATISSION F, et al. A laboratory study of the reduction of iron oxides by hydrogen[J]. Physics, 2008, 43(44): 3302–3303.

[14]  KANG J, OKABE T H. Thermodynamic consideration of the removal of iron from titanium ore by selective chlorination[J]. Metall Mater Trans B, 2014, 45(4): 1260–1271.

[15]  ZHANG J H, WU H D, LEI X R, et al. Thermodynamics of reaction of whitening calcined kaolin by sodium chloride[J]. J Wuhan Univ Technol, 2011, 33(10): 104–107.

[16]  LI L S, ZHAI Y C, QIN J G, et al. Extracting high-purity alumina from fly ash[J]. J Chem Ind Eng, 2006, 57(9): 2189–2193.

[17]  PARK H C, PARK Y J, STEVENS R. Synthesis of alumina from high purity alum derived from coal fly ash[J]. Mater Sci Eng A-Struct, 2004, 367(1/2): 166–170.

[18]  曾丽, 彭同江. 硫酸铵焙烧活化石棉尾矿提取镁实验研究[J]. 非金属矿, 2012, 35(2): 8–11.
ZENG Li, PENG Tongjiang. Non-Met Mines (in Chinese), 2012, 35(2): 8–11.

[19]  SALEH H I, HASSAN K M. Extraction of zinc from blast-furnace dust using ammonium sulfate[J]. J Chem Technol Biot, 2004, 79(4): 397–402.

[20]  XIA H D, WEI K. Equivalent characteristic spectrum analysis in TG–MS system[J]. Thermochim Acta, 2015, 602: 15–21.

[21]  田海山, 刘立新, 孙志明, . 西藏班戈湖水菱镁的矿热分解特性[J]. 硅酸盐学报, 2017, 45(2): 317–322.
TIAN Haishan, LIU Lixin, SUN Zhiming, et al. J Chin Ceram Soc, 2017, 45(2): 317–322.

[22]  WANG P, LI L S, WEI D Z. Kinetics analysis on mixing calcination process of fly ash and ammonium sulfate[J]. Chin J Chem Eng, 2014, 22(9): 1027–1032.

[23]  LI Q, XU D, CHEN Y, et al. Decomposition of ammonium sulfate residue in a high solid/gas ratio suspension state with an industrial-scale reactor system (production line)[J]. Particuology, 2015, 22(5): 107–113.

[24]  WU Y S, XU P, CHEN J, et al. Effect of temperature on phaseand alumina extraction efficiency of the product from sintering coal fly ash with ammonium sulfate[J]. Chin J Chem Eng, 2014, 22(11/12): 1363–1367.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com