首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
温压条件下蒙脱石水化的分子动力学模拟
作者:张亚云1  勉1  亚2  衍1 卢运虎1  阳1 
单位:1. 中国石油大学(北京) 油气资源与探测国家重点实验室 北京 102249 2. 中国石油勘探开发研究院 北京 100083 
关键词:蒙脱石 水化 传导特性 力学弱化 分子模拟 
分类号:TE21
出版年,卷(期):页码:2018,46(10):0-0
DOI:10.14062/j.issn.0454-5648.2018.10.21
摘要:

 :从深层页岩的黏土矿物特征出发,通过分子动力学模拟研究了含水量、温度和压力条件对蒙脱石水化中物质传导与

力学弱化特征的影响规律。研究表明:随含水量的增加,层间距增大,但温压条件对蒙脱石晶体的层间距影响较小;含水量
和温压条件对蒙脱石水化过程中水分子与钠离子的传导与分布和力学特征影响显著。随含水量增加、温度升高和压力降低,
水分子和钠离子的扩散系数增加,侵入黏土晶层的能力增强,且钠离子配位数减少,使蒙脱石力学劣化效应更显著。
Based on the features of clay minerals in deep shale, the influences of water content, temperature and pressure conditions
on the conduction evolution and mechanical weakening characteristics of montmorillonite hydration were investigated via molecular
dynamics simulation. The simulated results indicate that the interlayer spacing increases with the increase of water content. The water
content, temperature and pressure all have effects on the conduction and distribution of water molecules and sodium ions, and the
mechanical properties of montmorillonite during the hydration process. The diffusion coefficient of water molecules and sodium ions
increases with the increases of water content and temperature and the decrease of pressure, thus enhancing the ability of water
penetrate to the clay mineral layer. The decrease of coordination number results in the more weakening effect of montmorillonite.
 
基金项目:
作者简介:
参考文献:

 [1] 陈勉, 金衍, 卢运虎. 页岩气开发:岩石力学的机遇与挑战[J]. 中国科学: 物理学 力学 天文学, 2017(11): 6?18.

CHEN Mian, JIN Yan, LU Yunhu. Sci Sin Phys Mech Astron (in Chinese), 2017(11): 6?18.
[2] 陈秀荣. 泥页岩井壁稳定性研究[D]. 武汉: 中国地质大学, 2009.
CHEN Xiurong. Study on wellbore Stability in shale formation (in Chinese, dissertation), Wuhan: China University of Geosciences, 2009.
[3] 邓虎. 裂缝性泥页岩的水化稳定性研究及其应用[D]. 成都: 西南石油学院, 2004.
DENG Hu. Study on hydration stability of fractured Slate and Its application (in Chinese, dissertation), Chengdu: Southwest Petroleum University, 2004.
[4] LI X, YAN X, KANG Y. Investigation of drill-in fluids damage and its impact on wellbore stability in Longmaxi shale reservoir[J]. J Petroleum Sci Eng, 2017, 159: 702?709.
[5] He S, LIANG L, ZENG Y, et al. The influence of water-based drilling fluid on mechanical property of shale and the wellbore stability[J]. Petroleum, 2016, 2(1): 61?66.
[6] YU M, CHEN G, CHENEVERT M E, et al. Chemical and thermal effects on wellbore stability of shale formations[C]//SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 2001.
[7] ZHANG Y, CHEN M, JIN Y, et al. Tee influence of oil-based drilling fluid on the wellbore instability and fracturing in complex shale formation[C]//50th US Rock Mechanics/Geomechanics Symposium. Houston, Texas, 2016.
[8] 石秉忠, 夏柏如, 林永学, 等. 硬脆性泥页岩水化裂缝发展的CT成像与机理[J]. 石油学报, 2012, 33(1): 137?142.
SHI Bingzhong, XIA Bairu, LIN Yongxue, et al. Acta Petrolei Sin (in Chinese), 2012, 33(1): 137?142.
[9] BOEK E S. Molecular dynamics simulations of interlayer structure and mobility in hydrated Li-, Na- and K- montmorillonite clays[J]. Mol Phys, 2014, 9?10(112): 1472?1483.
[10] ZHANG W N, HU H X, LI X C, et al. Changes in micromechanical properties of Na-montmorillonite caused by CO2/H2O sorption[J]. Comput Materi Sci, 2017, 129: 178?183.
[11] SKIPPER N T, SPOSITO G, CHANG F C. Monte Carlo simulation of interlayer molecular structure in swelling clay minerals.2. Monolayer hydrates[J]. Clays Clay Miner, 1995, 43(3): 294?303.
[12] CHANG F C, SKIPPER N T, SPOSITO G. Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates[J]. Langmuir, 1995, 11(7): 2734?2741.
[13] SPOSITO G, PARK S, SUTTON R. Monte Carlo simulation of the total radial distribution function for interlayer water in sodium and potassium montmorillonites[J]. Clays Clay Mine, 1999, 47(2): 192?200.
[14] PARK S, SPOSITO G. Monte Carlo simulation of total radial distribution functions for interlayer water in Li-, Na-, and K-montmorillonite hydrates[J]. J Phys Chem B, 2000, 104(19): 4642?4648.
[15] CYGAN R T, LIANG J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. J Phy Chem B, 2004, 108(4): 1255?1266.
[16] DE Pablo L, CHÁVEZ M L, DE Pablo J J. Stability of Na-, K-, and Ca-montmorillonite at high temperatures and pressures: a Monte Carlo simulation[J]. Langmuir, 2005, 21(23): 10874?10884.
[17] ZHENG Y, ZAOUI A, SHAHROUR I. Evolution of the interlayer space of hydrated montmorillonite as a function of temperature[J]. Am Mineral, 2010, 95(10): 1493?1499.
[18] CARRIER B, VANDAMME M, PELLENQ R, et al. Elastic properties of swelling clay particles at finite temperature upon hydration[J]. J Phy Chem C, 2014, 118(17): 8933?8943.
[19] EBRAHIMI D, PELLENQ R J, WHITTLE A J. Nanoscale elastic properties of montmorillonite upon water adsorption[J]. Langmuir, 2012, 28(49): 16855?16863.
[20] 徐加放, 孙泽宁, 刘洪军, 等. 分子模拟无机盐抑制蒙脱石水化机理[J]. 石油学报, 2014(02): 377?384.
XU Jiafang, SUN Zening, LIU Hongjun, et al. Acta Petrolei Sin (in Chinese), 2014,35(2): 377?384.
[21] 黄小娟, 徐加放, 丁廷稷, 等. 有机胺抑制蒙脱石水化机理的分子模拟[J]. 石油钻采工艺, 2017(04): 442?448.
HUANG Xiaojuan, XU Jiafang, DING Tingji, et al. Oil Drill Prod Technol (in Chinese), 2017(04): 442?448.
[22] 徐加放, 顾甜甜, 沈文丽, 等. 无机盐对蒙脱石弹性力学参数影响的分子模拟与实验研究[J]. 中国石油大学学报(自然科学版), 2016(02): 83?90. 
XU Jiafang, GU Tiantian, SHEN Wenli, et al. China Univ Petr: Nat Sci (in Chinese), 2016,40(2): 83?90.
[23] 王进, 王军霞, 曾凡桂, 等. 水化锂蒙脱石层间结构和动力特征的分子模拟[J]. 化学学报, 2010(16): 1653?1660.
WANG Jin, WANG Junxia, ZENG Fangui, et al. Acta Chim Sin (in Chinese), 2010, 68(16): 1653?1660.
[24] 王进, 王军霞, 曾凡桂. 钾基蒙脱石的分子力学和分子动力学模拟[J]. 硅酸盐学报, 2009(04): 554?561.
WANG Jin, WANG Junxia, Zeng Fangui. J Chin Ceram Soc, 2009, 37(4): 554?561.
[25] 王进, 曾凡桂, 王军霞. 锂-, 钠-, 钾水化蒙脱石层间结构的分子动力学模拟[J]. 化学学报, 2006(16): 1654?1658. 
WANG Jin, WANG Junxia, ZENG Fangui. Acta Chim Sin (in Chinese), 2006, 64(16): 1654?1658.
[26] 王进. 蒙脱石层间结构的分子力学和分子动力学模拟研究[D]. 太原: 太原理工大学, 2005. 
WANG Jin. Molecular mechanics and molecular dynamics simulation studies of interlayer structure in montmorillonites[D]. (in Chinese, dissertation) Taiyuan: Taiyuan University of Technology, 2005.
[27] 王进, 曾凡桂, 王军霞. 钠蒙脱石水化膨胀和层间结构的分子动力学模拟[J]. 硅酸盐学报, 2005(08): 996?1001.
WANG Jin, WANG Junxia, Zeng Fangui. J Chin Ceram Soc, 2005, 33(8), 996?1001.
[28] LIU X, LU X, WANG R, et al. Interlayer structure and dynamics of alkylammonium-intercalated smectites with and without water: A molecular dynamics study[J]. Clays Clay Miner, 2007, 55(6): 554?564.
[29] SUTER J L, COVENEY P V, GREENWELL H C, et al. Large-scale molecular dynamics study of montmorillonite clay:  Emergence of undulatory fluctuations and determination of material properties[J]. J Phys Chem C, 2007, 111(23): 8248?8259.
[30] TELEMAN O, JONSSÖN B, ENGSTRÖM S. A molecular dynamics simulation of a water model with intramolecular degrees of freedom[J]. Mol Phys, 1987, 60(1): 193?203.
[31] SHAHRIYARI R, KHOSRAVI A, AHMADZADEH A. Nanoscale simulation of Na-Montmorillonite hydrate under basin conditions, application of CLAYFF force field in parallel GCMC[J]. Mol Phys, 2013, 111(20): 3156?3167.
[32] CHÁVEZ Páez M, VAN Workum K, DE Pablo L, et al. Monte carlo simulations of Wyoming sodium montmorillonite hydrates[J]. J Chem Phys, 2001, 114(3): 1405?1413.
[33] 刘洪军. 井壁稳定机理模拟研究[D]. 青岛: 中国石油大学(华东), 2013: 84.
LIU Hongjun, Simulation study on borehole stability mechanism. (in Chinese, dissertation). Qingdao: China University of Petroleum (East China), 2013.
[34] ZHOU J, LU X, WANG Y, et al. Molecular dynamics study on ionic hydration[J]. Fluid Phase Equilibria, 2002(194): 257?270.
[35] LOCK P A, SKIPPER N T. Computer simulation of the structure and dynamics of phenol in sodium montmorillonite hydrates[J]. Eur J Soil Sci, 2007, 58(4): 958?966.
[36] VOIGT W. Ueber die Beziehung zwischen den beiden elasticitätsconstanten isotroper Körper[J]. Annalen der Phys, 1889, 274(12): 573?587.
[37] REUSS A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle[J]. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Math und Mech, 1929, 9(1): 49?58.
[38] HILL R. The elastic behaviour of a crystalline aggregate[J]. Proc Phys Soc Sect A, 1952, 65(5): 349.
[39] WANG Z, WANG H, CATES M E. Effective elastic properties of solid clays[J]. Geophysics, 2001, 66(2): 428?440.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com