首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
结构弛豫对Al3+/Yb3+共掺石英玻璃结构和性能的影响
作者:郭梦婷1 2 邵冲云1 2 王璠1 2 任进军1 于春雷1 王世凯1 胡丽丽1 
单位:1. 中国科学院上海光学精密机械研究所 上海 201800 2. 中国科学院大学 北京 100049 
关键词:结构弛豫 镱掺杂石英玻璃 光谱性质 物理性质 稀土局域结构 
分类号:TN244
出版年,卷(期):页码:2018,46(11):0-0
DOI:10.14062/j.issn.0454-5648.2018.11.01
摘要:

 采用溶胶–凝胶法结合高温烧结工艺制备Al3+/Yb3+共掺石英玻璃,通过在玻璃转变温度(Tg)以下对玻璃进行等温退火,研究了退火时间对Al3+/Yb3+共掺杂石英玻璃密度、折射率和光谱性质的影响,并利用X射线衍射、Fourier转换红外(FTIR)、Raman光谱、核磁共振等结构分析手段探索其影响机理。结果表明:当退火温度为900 ℃时,随着退火时间增加,Al3+/Yb3+掺杂石英玻璃的折射率逐渐增大,紫外吸收边逐渐蓝移,Yb3+离子的吸收和发射截面逐渐下降,退火200 h后Yb3+离子出现2个荧光寿命;在Tg温度以下退火,玻璃的非晶态特征和Al的配位数不会发生明显变化;玻璃的假想温度及结构混乱度随退火时间增加逐渐下降。

 Yb3+/Al3+-co-doped silica glasses were prepared by sol–gel process and subsequent high-temperature sintering. The effect of sub-Tg annealing duration on the density, refractive index and spectra of glass was investigated. The related mechanism was analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and nuclear magnetic resonance (NMR), respectively. The results show that the refractive index of Yb3+/Al3+-co-doped silica glasses increases and the absorption and emission cross sections decrease with increasing annealing time at annealing temperature of 900 ℃. When sub-Tg annealing time increases, the UV-Vis absorption edge becomes blue shift, and two fluorescence lifetime of Yb3+ ions appears after   200 h annealing. The amorphous state and coordinating numbers of Al3+ ions basically remain unchanged in sub-Tg annealing process. The fictive temperature, Tf, and the structural disorder of glass decrease with the increase of annealing time.

基金项目:
国家自然科学基金(61775224和61505232);国家高技术研究发展计划(2016YFB0402201)。
作者简介:
参考文献:

 [1] WANG S, LOU F, WANG M, et al. Characteristics and laser performance of Yb3+-doped silica large mode area fibers prepared by sol–gel method[J]. Fibers, 2013, 1(3): 93–100.

[2] LEICH M, JUST F, LANGNER A, et al. Highly efficient Yb-doped silica fibers prepared by powder sinter technology[J]. Opt Lett, 2011, 36(9): 1557–1559.
[3] 李家治, 陈学贤, 盛连根. 玻璃的结构弛豫[J]. 硅酸盐学报, 1983(3): 88–97.
LI Jiazhi, CHEN Xuexian, SHENG Liangen. J Chin Ceram Soc,1983(3): 88–97.
[4] TOOL A Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range[J]. J Am Ceram Soc, 2010, 29(9): 240–253.
[5] KOIKE A, RYU S R, TOMOZAWA M. Adequacy test of the fictive temperatures of silica glasses determined by IR spectroscopy[J]. J Non-Cryst Solids, 2005, 351(52/54): 3797–3803.
[6] RYU S R, TOMOZAWA M. Fictive temperature measurement of amorphous SiO2 films by IR method[J]. J Non-Cryst Solids, 2006, 352(36–37): 3929–3935.
[7] AGARWAL A, DAVIS K M, TOMOZAWA M. A simple IR spectroscopic method for determining fictive temperature of silica glasses[J]. J Non-Cryst Solids, 1995, 185(1–2): 191–198.
[8] KAKIUCHIDA H, SHIMODAIRA N, SEKIYA E H, et al. Refractive index and density in F- and Cl- doped silica glasses[J]. Appl Phys Lett, 2005, 86(16): 161907–161907–3.
[9] KAKIUCHIDA H, SAITO K, IKUSHIMA A J. Dielectric relaxation in silica glass[J]. J Appl Phys, 1999, 86(11): 5983–5987.
[10] SAITO K, OGAWA N, IKUSHIMA A J, et al. Effects of aluminum impurity on the structural relaxation in silica glass[J]. J Non-Cryst Solids, 2000, 270(1/3): 60–65.
[11] ZHANG Y, LIU S, TAO H, et al. Structural response to sub-Tg, annealing in a hyperquenched SiO2 -Al2O3 glass[J]. J Alloys Compds, 2018, 741:331-336.
[12] HAKEN U, HUMBACH O, ORTNER S, et al. Refractive index of silica glass: influence of fictive temperature[J]. J Non-Cryst Solids, 2000, 265(1/2): 9–18.
[13] YAMAMOTO R, SEKIYA E H. Fictive temperature dependences of optical properties in Yb-doped silica glass[C]//Conference on Solid State Lasers and Amplifiers III, Strasbourg, FRANCE, 2008, J9981–J9981. 
[14] WANG S, LI Z, YU C, et al. Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol–gel method[J]. Opt Mater, 2013, 35(9): 1752–1755.
[15] SHAO C, REN J, WANG F, et al. Origin of radiation-Induced Darkening in Yb3+/Al3+/P5+ doped silica glasses: Effect of P/Al ratio.[J]. J Phys Chem B, 2018, 122(10) doi:10.1021/acs.jpcb.7b12587.
[16] YUE Y. Anomalous enthalpy relaxation in vitreous silica[J]. Front Mater, 2015(2): 1–11.
[17] RICHET P, BOTTINGA Y, DENIELOU L, et al. Thermodynamic properties of quartz, cristobalite and amorphous SiO2 : drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K [J]. Geochim Cosmochim Acta, 1982, 46(12): 2639–2658.
[18] YANG B, LIU X, WANG X, et al. Compositional dependence of room-temperature Stark splitting of Yb³+ in several popular glass systems[J]. Opt Lett, 2014, 39(7):1772–1774.
[19] ZHANG L, XUE T, HE D, et al. Influence of Stark splitting levels on the lasing performance of Yb3+ in phosphate and fluorophosphate glasses[J]. Opt Exp, 2015, 23(2): 1505–1511.
[20] 王朋, 王超, 胡丽丽, 等. SiO2对Yb3+离子在磷酸盐玻璃中扩大Stark分裂的作用[J]. 物理学报, 2016, 65(5): 303–309.
WANG Peng, WANG Chao, HU Lili, et al. Acta Phys Sin (in Chinese), 2016, 65(5): 303–309.
[21] POE B T, MCMILLAN P F, ANGELL C A, et al. Al and Si coordination in SiO2 -Al2O3 glasses and liquids: A study by NMR and IR spectroscopy and MD simulations[J]. Chem Geol, 1992, 96(96): 333–349.
[22] KAKIUCHIDA H, SAITO K, IKUSHIMA A J. Precise determination of fictive temperature of silica glass by infrared absorption spectrum[J]. J Appl Phys, 2003, 93(1): 777–779.
[23] GALEENER F L. Erratum: Band limits and vibrational spectra of tetrahedral glasses[J]. Phys Rev B, 1979, 20(10): 4382–4382.
[24] GEISSBERGER A E, GALEENER F L. Raman studies of vitreous SiO2 versus fictive temperature[J]. Phys Rev B, 1983, 28(28): 3266–3271.
[25] SAITO K, IKUSHIMA A J. Effects of fluorine on structure, structural relaxation, and absorption edge in silica glass[J]. J Appl Phys, 2002, 91(8): 4886–4890.
[26] GALEENER F L, GEISSBERGER A E. Vibrational dynamics in 30Si-substituted vitreous SiO2[J]. Phys Rev B, 1983, 27(10): 6199–6204.
[27] GALEENER F L. Planar rings in vitreous silica[J]. J Non-Cryst Solids, 1982, 49(1–3): 53–62.
 
[28] AUZEL F. On the maximum splitting of the (2F7/2 ) ground state in Yb3+ -doped solid state laser materials[J]. J Lumin,2001, 93(2): 129–135.
[29] CHARLES C R, FOURNIER J T. Coordination of Yb3+ in phosphate, silicate, and germanate glasses[J]. J Phys Chem Solids, 1970, 31(5): 895–904.
[30] 楼立人, 尹民, 李清庭. 发光物理基础:固体光跃迁过程[M]. 中国科学技术大学出版社, 2014: 79–86.
[31] KAKIUCHIDA H, SHIMODAIRA N, SEKIYA E H, et al. Refractive index and density in F- and Cl-doped silica glasses[J]. Appl Phys Lett, 2005, 86(16): 161907–161907-3.
[32] SHELBY J E. Protonic species in vitreous silica[J]. J Non-Cryst Solids,1994, 179(11): 138–147.
[33] 周永恒. 石英玻璃及原料中羟基的研究[D]. 中国建筑材料科学研究院, 2002.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com