首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
不同熔制气氛对低熔点锡氟磷酸盐玻璃的光谱性能和结构的影响
作者:王亚杰1 2 岳玉1 2 严洒洒1 2 张丽艳1 陈丹平1 
单位:1. 中国科学院上海光学精密机械研究所高功率激光单元技术研发中心 上海 201800 2. 中国科学院大学 北京 100049 
关键词:低熔点 锡氟磷酸盐玻璃 光谱性能 气氛 结构 
分类号:TU528
出版年,卷(期):页码:2018,46(11):0-0
DOI:10.14062/j.issn.0454-5648.2018.11.04
摘要:

 采用传统高温熔融法在氮气、空气、氧气等不同气氛条件下制备了转变温度较低的40SnF2–30SnO–30P2O5 (SSP)玻璃,系统地研究了不同气氛条件对其光谱性能和和结构的影响。结果表明:随着制备气氛氧含量的改变,SSP玻璃的紫外吸收边和激发光谱发生红移,其发光强度逐渐减低,部分Sn2+被氧化成Sn4+,玻璃中Sn4+含量逐渐增多,并且随着更多的氧进入玻璃参与成键,使得玻璃中Q2基团中P—O键增多。

40SnF2–30SnO–30P2O5 (SSP) glasses with a low glass transition temperature were prepared under different atmosphere conditions (i.e., nitrogen, air and oxygen) by a conventional high-temperature melting method. The photoluminescence properties of these glasses were investigated. As the preparation atmosphere changes from N2, air to O2, the UV absorption edge and photo luminescence excitation spectra of SSP glasses become red shifted, and the photo luminescence emission intensity gradually decreases. Based on the analysis by X-ray photoelectron spectroscopy and Raman spectroscopy, a part of Sn2+ in SSP glasses is oxidized to Sn4+ when the preparation atmosphere changes from N2, air to O2, and the content of Sn4+ in the glasses gradually increases. Also, more oxygen enters the glass to participate in bonding, thus increasing the P—O bond in Q2 group.

 
基金项目:
作者简介:
参考文献:

 [1] LIN Y, TYLER R, SUN H, et al. Improving oxygen barrier property of biaxially oriented PET/phosphate glass composite films[J]. Polymer, 2017, 127: 236–40.

[2] YORK-WINEGAR J, HARPER T, BRENNAN C, et al. Structure of SnF2-SnO-P2O5 glasses[J]. Phys Proc, 2013, 44: 159–65.
[3] EHRT D. Effect of OH-content on thermal and chemical properties of SnO-P2O5 glasses[J]. J Non-Cryst Solids, 2008, 354(2–9): 546–52.
[4] LIU H, MA J, GONG J, et al. The structure and properties of SnF2–SnO–P2O5 glasses[J]. J Non-Cryst Solids, 2015, 419: 92–96.
[5] YOO H, KOUHARA Y, YOON H C, et al. Sn–P–F containing glass matrix for the fabrication of phosphor-in-glass for use in high power LEDs[J]. RSC Adv, 2016, 6(113): 111640–11647.
[6] XIANG X, WANG B, LIN H, et al. Towards long-lifetime high-performance warm w-LEDs: Fabricating chromaticity-tunable glass ceramic using an ultra-low melting Sn-P-F-O glass[J]. J Eur Ceram Soc, 2018, 38: 1990–1997.
[7] TICK P A. Water Durable Glasses with Ultra Low Melting Temperatures[J]. Phys Chem Glass, 1984, 25[6]: 149–154.
[8] CATHY M, SHAW J. Effect of lead compounds on the properties of stannous fluorophosphate glasses[J]. J Am Ceram Soc, 1988, 75(1): 252–253.
[9] DING J, SHIH P Y, YUNG S W, et al. The properties and structure of Sn-Ca-P-O-F glasses[J]. Mater Chem Phys, 2003, 82(1): 61–67.
[10] ITURRARAN N, HURAUX K, BAO Y, et al. Effect of melting parameters during synthesis on the structure and properties of tin fluoride phosphate glasses[J]. J Non-Cryst Solids, 2018, 489: 64–70.
 
[11] STOJAN R, ROBERT B. Photorefraction in lead–tin-fluorophosphate glasses[J]. Opt Lett, 1998, 23(22): 1730–1732.
[12] INDUJA I J S, MAILADIL T. Microwave dielectric properties of SnO-SnF2-P2O5 glass and its composite with alumina for ULTCC applications[J]. J Am Ceram Soc, 2017, 100(6): 2632–2640.
[13] JIANG S,WANG J. Spectral properties of organic chromophores in fluorophosphate glasses[J]. J Non-Cryst Solids, 2000, 263&264: 358–363.
[14] LIU B, HE X, GU M, et al. Luminescence spectra of stilbene-3 doped lead–tin–fluorophosphate glass excited by VUV–UV synchrotron radiation[J]. J Non-Cryst Solids, 2008, 354(29): 3462–67.
[15] WANG Y, YU Y, ZOU Y, et al. Broadband visible luminescence in tin fluorophosphate glasses with ultra-low glass transition temperature[J]. RSC Adv, 2018, 8(9): 4921–4927.
[16] MASAI H, TANIMOTO T, OKUMURA S, et al. Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO–P2O5 glasses[J]. J Mater Chem C, 2014, 2(12): 2137–2143.
[17] JIMÉNEZ J A. Luminescent tin-doped phosphate glasses activated by carbon[J]. Mater Res Bull, 2017, 88: 131–135.
[18] TSAI C, CHEN L, YEH T, et al. In situ Sn2+-incorporation synthesis of titanate nanotubes for photocatalytic dye degradation under visible light illumination[J]. J Alloys Compd, 2013, 546: 95–101.
[19] FAN C, PENG Y, ZHU Q, et al. Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2-x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity[J]. J Phys Chem C, 2013, 117(46): 24157–66.
[20] ZHANG L , LI H, AND HU L. Statistical structure analysis of GeO2 modified Yb3+: Phosphate glasses based on Raman and FTIR study[J]. J Alloys Compd, 2017, 698: 103–13.
[21] WANG Y , WANG C, KANG S, et al. Influence of SiO2 on the Stark splitting and spectroscopic properties of Yb3+ in phosphate glass[J]. J Lumin, 2017, 186: 268–72.
[22] TRIMBLE J, GOLOVCHAK R, BRENNAN C, et al. Structural characterisation of tin fluorophosphate glasses doped with Er2O3[J]. Phys Chem Glasses: Eur J Glass Sci Technol, Part B, 2016, 57(1): 27–31.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com