首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
渐变型折射率钇铝硅酸盐玻璃光纤的制备
作者:张晔明1 丁新琪2 肖湘杰2 钟玖平3 邱建荣4 
单位:1. 华南理工大学材料科学与工程学院 广州510641 2. 深圳太辰光通信股份有限公司 广东 深圳518040  3. 中山大学材料科学与工程学院 广州 510275 4. 浙江大学光电科学与工程学院 杭州310027 
关键词:光纤 钇铝硅酸盐玻璃 熔体共拉法 渐变折射率 
分类号:TQ171
出版年,卷(期):页码:2018,46(11):0-0
DOI:10.14062/j.issn.0454-5648.2018.11.05
摘要:

 使用钇铝石榴石(YAG)单晶芯棒和光学级石英管构成预制棒,基于管中熔体共拉法制备了钇铝硅酸盐(YAS)玻璃光纤,研究了拉丝过程中由于元素迁移形成的光纤纤芯附近的元素分布和折射率分布。结果表明,使用管中熔体共拉法制备的光纤为折射率渐变型光纤,芯包层折射率差Δn从预制棒的0.380变为光纤中的0.057。所获得的YAS光纤理论最大数值孔径为0.41,具有较高的耦合效率。这种光纤有潜力应用于自聚焦效应相关的领域。

 Yttrium aluminum silicate (YAS) fiber was prepared by a “Melt-in-Tube” method with YAG single crystal and optical grade silica glass tube as a core and a clad to form a preform. The distribution of elements and the refractive index nearby the core of the YAS fiber were analyzed. The results indicate that the fiber prepared via element migration presents as a gradient refraction index profile, the refractive index difference (Δn) of the core-cladding is turned to be Δn=0.057 from Δn=0.380 preform. The maximum theoretical numerical aperture of the YAS fiber is 0.41, which means a high coupling efficiency. The obtained YAS fiber is a promising candidate for the application related to “self focusing” effect. 

基金项目:
广东省科学技术厅(2015B090901038);深圳市科技研发资金(GJHS 20160330152111138);广东省科技计划国际合作项目(2015A050502019)。
作者简介:
参考文献:

 [1] 刘颂豪. 光纤激光器的新进展[J]. 大气与环境光学学报, 2003, 16(1): 1–8.

LIU Songhao. Optoelectr Technol Inform (in Chinese), 2003, 16(1): 1–8.
[2] 张军杰, 胡丽丽, 姜中宏. 稀土离子掺杂的多组分玻璃光纤[J]. 硅酸盐学报, 2007, 35(s1): 59–65.
ZHANG Junjie, HU Lili, JIANG Zhonghong. J Chin Ceram Soc, 2007, 35 (S1): 59–65.
[3] BALLATO J, DRAGIC P. Rethinking optical fiber: New demands, old glasses[J]. J Am Ceram Soc, 2013, 96(9): 2675–2692.
[4] 谢康, 吴椿烽, 钱宜刚. 拉丝工艺对光纤性能的影响[J]. 光通信技术, 2013, 37(7): 51–53.
XIE Kang, WU Chunfeng, QIAN Yigang. Opt Commun Technol (in Chinese), 2013, 37(7): 51–53.
[5] TOMLINSON W J. Applications of GRIN-rod lenses in optical fiber communication systems[J]. Appl Opt, 1980, 19(7): 1127–1138.
[6] ISHIGURE T, NIHEI E, KOIKE Y, et al. Large-core, high-bandwidth polymer optical fiber for near infrared use[J]. IEEE Photon Technol Lett, 1995, 7(4): 403–405.
[7] NIHEI E, ISHIGURE T, KOIKE Y. High-bandwidth, graded-index polymer optical fiber for near-infrared use.[J]. App Opt, 1996, 35(36): 7085–7090.
[8] 涂峰, 杨晨, 曹蓓蓓. 渐变折射率硬塑料包层大芯径光纤[C]// 中国通信学会2007年光缆电缆学术年会论文集. 2007.
TU Feng, YANG Chen, CAO Beibei. Graded index hard plastic cladding large core fiber[C]// Proceedings of the 2007 Annual Conference of China Communications Association optical cable and cable (in Chinese), 2007.
[9] 陈瑞芳. 用离子交换法制作梯度折射率材料[J]. 光学仪器, 1990(6): 33–38.
CHEN Ruifang. Opt Instrum (in Chinese), 1990(6): 33–38.
[10] 李庆国, 吴雯雯, 孙可元. MCVD渐变折射率多模光纤预制棒工艺探讨[C]// 中国通信学会2013年光缆电缆学术年会论文集, 2013.
LI Qingguo, WU Wenwen, SUN Keyuan. MCVD gradient refractive index multimode fiber prefabricate technology[C]// Proceedings of the China Telecommunications society 2013 annual conference of optical cable and cable (in Chinese), 2013.
[11] FANG Z, ZHENG S, PENG W, et al. bismuth‐doped multicomponent optical fiber fabricated by melt‐in‐tube Method[J]. J Am Ceram Soc, 2016, 99(3): 856–859.
[12] PENG W, FANG Z, MA Z, et al. Enhanced upconversion emission in crystallization controllable glass-ceramic fiber containing Yb3+-Er3+ codoped CaF2 nanocrystals[J]. Nanotechnology, 2016, 27(40): 405203–405208.
[13] BALLATO J, HAWKINS T, FOY P, et al. On the fabrication of all-glass optical fibers from crystals[J]. J Appl Phys, 2009, 105(5): 757–762.
[14] DRAGIC P D, BALLATO J, HAWKINS T, et al. Feasibility study of Yb: YAG-derived silicate fibers with large Yb content as gain media[J]. Opt Mater, 2012, 34(8): 1294–1298.
[15] ZHENG S, LI J, YU C, et al. Preparation and characterizations of Nd:YAG ceramic derived silica fibers drawn by post-feeding molten core approach[J]. Opt Exp, 2016, 24(21): 24248–24256.
[16] ZHENG S, LI J, YU C, et al. Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach[J]. Ceram Int, 2017, 43(7): 5837–5841. 
[17] ZHANG Y, QIAN G, XIAO X, et al. A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method[J]. J Am Ceram Soc, 2018, 101(4): 1616–1622. 
[18] HEHLEN B. Inter-tetrahedra bond angle of permanently densified silicas extracted from their Raman spectra.[J]. J Phys Condens Matter, 2010, 22(2): 025401–025407.
[19] DRAGIC P D, BALLATO J. Characterisation of Raman gain spectra in Yb: YAG-derived optical fibres[J]. Electron Lett, 2013, 49(14): 895–897.
[20] 张伟刚. 光纤光学原理及应用[M]. 北京: 清华大学出版社, 2012.
[21] MAO Y, CHANG S, SHERIF S, et al. Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging[J]. Appl Opt, 2007, 46(23): 5887.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com