首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
CdSe量子点掺杂硼硅酸盐玻璃的光学性能
作者:许周速 程成 
单位:浙江工业大学光电子智能化技术研究所 杭州 310023 
关键词:硒化镉量子点 硼硅酸盐玻璃 玻璃网络结构 荧光寿命 析晶 
分类号:TN304.2
出版年,卷(期):页码:2018,46(11):0-0
DOI:10.14062/j.issn.0454-5648.2018.11.06
摘要:

 将CdO和ZnSe作为量子点引入前驱体,采用高温熔融冷却–热处理法,制备了CdSe量子点掺杂硼硅酸盐玻璃。透射电子显微镜测试表明,CdSe量子点呈六方晶结构。荧光光谱测试表明,CdSe量子点在可见波段存在本征发光和缺陷发光。随热处理温度增高,可以降低缺陷发光,提高量子点本征发光。研究了玻璃网络结构对CdSe量子点析晶影响。结果表明,随着B2O3含量增大,玻璃中二维(2D)网络结构增多,Cd2+和Se2–移动能力增强,有利于量子点析出和表面缺陷钝化。CdSe量子点波长可调谐发光的特性,使得其有望作为在可见光波段的光增益介质。

 Borosilicate glasses doped with CdSe quantum dots (QDs) were prepared by a conventional melt-quenching process and subsequent heat treatment, using CdO and ZnSe as precursors of CdSe QDs. Based on the result by transmission electron microscopy (TEM), CdSe QDs are hexagonal crystals. The result of photoluminescence (PL) spectra shows that CdSe QDs exhibit intrinsic luminescence and defect related luminescence in a visible band. The intensity of defect related to luminescence decreases, while the intensity of intrinsic luminescence of quantum dots increases with increasing heat-treatment temperature. The effect of glass network structure on the crystallization of CdSe QDs was investigated. The result shows that the two-dimensional (2D) network structure and the mobility of Cd2+ and Se2- increase with increasing B2O3 concentration, which is conducive to the crystallization of QDs and the passivation of surface defect. The tunable PL emission of CdSe QDs-doped borosilicate glass could have a potential application as an optical gain material in the visible band.

基金项目:
浙江省自然科学基金项目(LY16F040005);国家自然科学基金项目(61474100);区域光纤通信网与新型光通信系统国家重点实验室开放研究课题;浙江工业大学校级教学改革项目(JG201729);浙江工业大学2016年度创新性实验项目。
作者简介:
参考文献:

LIU X F, ZHOU J J, ZHOU S F, et al. Transparent glass-ceramics functionalized by dispersed crystals[J]. Prog Mater Sci, 2018, 97: 38–96.

[2] MONGIN C, MOROZ P, ZAMKOV M, et al. Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots[J]. Nat Chem, 2018, 10(2): 255–230.

[3] Xu Z S, LIU X F, JIANG C, et al. Effect of topological structure on photoluminescence of PbSe quantum dot-doped borosilicate glasses[J]. J Am Ceram Soc, 2018,101(4): 1508–1515.

[4] KORALA L, WANG Z, LIU Y, et al. Uniform thin films of CdSe and CdSe(ZnS) core(shell) quantum dots by sol–gel assembly: enabling photoelectrochemical characterization and electronic applications[J]. ACS Nano, 2013,7(2): 1215–1223.

[5] BEAULAC R, ARCHER P I, OCHSENBEIN S T, et al. Mn2+-doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics[J]. Adv Funct Mater, 2008, 18(24): 3873–3891.

[6] CHENG C, WANG S, CHENG X. CdSe/PMMA: Plastic fiber material containing CdSe quantum dots[J]. Opt Laser Technol, 2012, 44(5): 1298–1300.

[7] LEE Y W, CHOI Y G, HEO J, et al. Compositional dependence of CdSe quantum dot formation on silicate host glass composition[J]. J Am Ceram Soc, 2013, 96(12): 3868–3871.

 

[8] KOLOBKOVA E V. Specific features of the growth of CdSe nanocrystals in fluorophosphate glasses[J]. Glass Phys Chem, 2006, 32(4): 404–411.

[9] SERQUEIRA1 E O, DANTAS N O. Luminescence of Nd3+ ions under excitation of CdSe quantum dots in a glass system: energy transfer[J]. Opt Lett, 2014, 39(1): 131–134.

[10] XU Z S, YAN J H, XU C, et al. Tunable near-infrared emission and fluorescent lifetime of PbSe quantum dot-doped borosilicate glass[J]. J Alloy Compd, 2017, 711: 58–63.

[11] DONG G P, WU B T, ZHANG F T, et al. Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses[J]. J Alloy Compd, 2011, 509(38): 9335–9339.

[12] XIA M L, LIU C, HAN J J, et al. Formation of CdS/Cd1−xZnxS sandwich-structured quantum dots with high quantum efficiency in silicate glasses[J]. J Lumin, 2017, 186: 30–33. 

[13] 江德生, 李国华, 韩和相, 等. 玻璃中CdSeS量子点的结构和光学性质[J]. 半导体学报, 2001, 22(8): 996–1001.

JIANG D S, LI G H, HAN H X, et al. J Semiconduct (in Chinese), 2001, 22(8): 996–1001.

[14] YU W W, QU L, GUO W, et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals[J]. Chem Mater, 2013, 15: 2854–2860.

[15] RAJAPAKSHA R D, RANASINGHE M I. The shell thickness and surface passivation dependence of ?uorescence decay kinetics in CdSe/ZnS core-shell and CdSe core colloidal quantum dot[J]. J Lumin, 2017, 192: 860–866.

[16] WU D, ZHU C, ZHANG M. Ce3+- and Dy3+-doped oxyfluoride borosilicate glasses with near white luminescence[J]. J Am Ceram Soc, 2016, 99(5): 1587–1593.

[17] CHAKRABORTY I N, DAY D E, LAPP J C, et al. Structure-property relations in lanthanide borate glasses[J]. J Am Ceram Soc, 1985, 68(7): 368–371.

[18] MOLLA A R, TARAFDER A, MUKHERJEE S, et al. Processing and properties of Eu3+-doped barium bismuth titanate (BaBi4Ti4O15) glass-ceramic nanocomposites[J]. J Am Ceram Soc, 2013, 96(8): 2387–2395.

[19] LUCACEL R C, MARCUS C, TIMAR V, et al. FT-IR and Raman spectroscopic studies on B2O3-PbO-Ag2O glasses doped with manganese ions[J]. Solid State Sci, 2007, 9(9): 850–854.

[20] SARMA G V S S, REDDY C V, VATTIKUTI S V P, et al. Spectral investigations of Mn2+ doped Zn3(BO3)2 nanopowder[J]. J Mol Struct, 2013, 1048: 64–68.

 

 

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com