首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
陶瓷抛光渣对水泥基材料碱集料反应的影响
作者:魏丽丽1 2 胡明玉1 郑江1 陈露璐1 付超1 
单位:1. 南昌大学建筑工程学院 南昌330031 2. 赤峰学院建筑与机械工程学院 内蒙古 赤峰024000 
关键词:陶瓷抛光渣 矿渣 碱集料反应 抑制机理 强度 
分类号:TQ172
出版年,卷(期):页码:2018,46(11):0-0
DOI:10.14062/j.issn.0454-5648.2018.11.11
摘要:

 以0%、20%、30%、40%陶瓷抛光渣等量取代水泥制备砂浆试样,矿渣作对比试验,通过膨胀率、强度测定、扫描电子显微镜观察和能谱分析,研究陶瓷抛光渣对水泥基材料碱集料反应的影响规律,揭示矿物掺合料抑制碱集料反应的机理。结果表明:陶瓷抛光渣能有效抑制水泥基材料的碱集料反应膨胀,且其抑制作用比矿渣更显著;两种掺合料使集料与胶凝材料界面区结构更密实,界面宽度更小;抛光渣的合理掺量为20%~30%、矿渣掺量应>30%。矿物掺合料抑制碱集料反应的机理为界面过渡区中Ca/Si比降低使集料表面碱度降低,降低了近集料区域生成高Na/Si比膨胀性产物的可能性,并且K+和Al3+在近集料处富集,形成非膨胀性产物。由于体系中Al2O3的存在,使K+对碱集料反应的作用低于Na+的作用。

 The influence of ceramic polishing powder on the alkali-aggregate reaction of cement-based materials was investigated. The mortar specimens were prepared by replacing 0%, 20%, 30%, and 40% of cement with the same amount of ceramic polishing powder. The expansion rate and strength were measured. The inhibition mechanism of the mineral admixture on the alkali-aggregate reaction was analyzed by scanning electron microscopy and energy disperse spectroscopy. The results show that ceramic polishing powder can restrain alkali-aggregate reaction of cement based materials. The inhibition effect on alkali-aggregate reaction of ceramic polishing powder is greater than that of slag. The mortar specimens modified with the two mixtures have a larger density and a smaller porosity, and the width of interfacial transition zone is narrower. The optimum content of the ceramic polishing powder is 20%–30% and the content of slag is greater than 30% to inhibit the expansion of alkali-aggregate reaction effectively and achieve the requirements of strength as well. Also, the reduction of Ca/Si ratio in the interfacial transition zone can reduce the alkalinity on the surface of aggregate. The possibility of producing expansibility products with a high Na/Si ratio in the aggregate region decreases. The accumulation of K+ and Al3+ions in the aggregates can generate the non-expansive product, which is the mechanism of the mineral admixture inhibition in the alkali-aggregate reaction. In addition, the effect of K+ions on the alkali-aggregate reaction is weaker than that of Na+ions due to the existence of Al2O3 in the system.

基金项目:
国家自然科学基金(51068023)资助。
作者简介:
参考文献:

 [1] DENG Min, TANG Mingshu. Measures To Inhibit Alkali-Dolomite Reaction[J]. Cem Concr Res, 1993, 23(5): 1115–1120.

[2] LUMELEY J S. ASR Suppression By Lithium Compounds[J]. Cem Concr Res, 1997, 27(2): 235–244.
[3] MC COY W J, CALDWELL A G. New approach to inhibiting alkali-aggregate expansion[J]. J Am Concr Instit, 1951, 22(9): 693–706.
[4] 俞琛捷, 莫祥银, 邓敏, 等. 锂离子在混凝土碱集料反应过程中的作用[J]. 东南大学学报(自然科学版), 2009(1): 127–130.
YU Chenjie, MO Xiangyin, DENG Min, et al. J Southeast Univ :(Nat Sci Ed) (in Chinese), 2009,(1): 127–130.
[5] HOOTON D H. Canadian use of ground granulated blast-furnace slag as a supplementary cementing material for enhanced performance of concrete[J]. CJCE, 2000, 27(4): 754–760.
[6] MALVAR L J, CLINE G D, BURKE D F, et al. Alkali-silica reaction mitigation: state of the art and recommendations[J]. ACI Mater J, 2002, 99(5): 480–489.
[7] DUCHESNE J, BÉRUBÉ M A. The effectiveness of supplementary cementing materials in suppressing expansion due to ASR: another look at the reaction mechanisms. Part 1: Concrete expansion and portlandite depletion[J]. Cem Concr Res, 1994, 24(1): 73–82.
[8] THOMAS M D A, INNIS F A. Effect of slag on expansion due to alkali-aggregate reaction in concrete[J]. ACI Mater J, 1998; 95(6): 716–724.
[9] 盖永丰, 戴民, 张敬会. 矿渣在高性能混凝土中的试验研究[J]. 混凝土, 2005, (7): 67–70.
GAI Yongfeng, DAI Min, ZHANG Jinghui. Concrete(in Chinese), 2005, (7): 67–70.
[10] 缪松兰, 马光华, 李清涛, 等. 建筑陶瓷抛光废渣制备轻质陶瓷材料的研究[J]. 陶瓷学报, 2005, 26(2): 71–79.
MIAO Songlan, MA Guanghua, LI Qingtao, et al. J Ceram(in Chinese), 2005, 626(2): 71–79.
[11] 段明磊, 肖强, 程智清, 等. 陶瓷抛光粉和石灰石粉双掺对混凝土性能的影响研究[J]. 混凝土与水泥制品, 2013(8): 5–8.
DUAN Minglei, XIAO Qiang, CHENG Zhiqing, et al. China Concr Cem Prod (in Chinese), 2013,(8): 5–8.
[12] 石正国, 王黎. 陶瓷砖抛光粉在C30混凝土中的应用[J]. 混凝土,2012(3): 138–140.
SHI Zhengguo, WANG Li. Concrete(in Chinese), 2012,(3): 138–140.
[13] 王功勋,, 谭琳,, 聂忆华,, 等. 陶瓷抛光渣对混凝土抗氯离子渗透性能的影响[J]. 硅酸盐通报,, 2012(6):: 1564–1570+1575.
WANG Gongxun, TAN Lin, NIE Yihua, et al. Bull Chin Ceram Soc (in Chinese), 2012(6): 156–1570+1575.
[14] 王功勋. 陶瓷抛光砖粉作辅助胶凝材料的火山灰性[J]. 硅酸盐学报, 2010, 38 (7): 1229–1234.
WANG Gongxun. J Chin Ceram Soc, 2010, 38(7): 1229–1234.
[15] AY N, UNAL M. The use of waste ceramic tile in cement production[J]. Cem Concr Res, 2000, 30(3): 497–499.
[16] 王功勋, 谭琳, 田苾, 等. 陶瓷抛光砖粉与水泥熟料的相互作用[J]. 硅酸盐通报, 2012, 31(6): 1586–1592.
WANG Gongxun, TAN Lin, TIAN Bi, et al. Bull Chin Ceram Soc (in Chinese), 2012, 31(6): 1586–1592.
[17] 浙江大学等. 硅酸盐物理化学[M]. 中国建筑工业出版社, 1981.
[18] 胡明玉. 运用模糊神经网络研究碱集料反应和混凝土性能[D]. 南京: 南京工业大学, 2003.
HU Mingyu. The study on alkali aggregate reaction and performance of concrete by fuzzy neural networks[D]. Nanjing: Nanjing Industrial University (in Chinese), 2003.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com