首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
热带岛礁环境下全珊瑚海水混凝土结构服役寿命的可靠性
作者:达波 余红发 麻海燕 吴彰钰 窦雪梅 
单位:南京航空航天大学土木工程系 南京 210016 
关键词:全珊瑚海水混凝土 表观氯离子扩散系数 保护层厚度 混凝土强度 失效概率 服役寿命 
分类号:TU528
出版年,卷(期):页码:2018,46(11):0-0
DOI:10.14062/j.issn.0454-5648.2018.11.16
摘要:

 基于修正氯离子扩散理论和可靠度理论的寿命分析软件ChaDuraLife V1.0,选取4种配合比的全珊瑚海水混凝土(CASC)进行实验室海水浸泡试验,研究了不同混凝土强度、不同养护龄期和不同暴露时间CASC的表观氯离子扩散系数(Da)、表面自由氯离子含量(Cs)及Da时间依赖性指数(m)的变化规律,探讨了保护层厚度和混凝土强度对CASC服役寿命的影响,提出了适应于热带海洋环境CASC的最小保护层厚度和混凝土强度等级的要求。结果表明:CASC的Da和Cs随着暴露时间的延长分别呈幂函数的降低趋势和幂函数的增长趋势;对于失效概率为5%~10%的CASC,当保护层厚度为7.5 cm、混凝土强度等级为C50时,其使用寿命可达17~19 a。因此,建议海洋工程中的CASC结构,其保护层厚度至少为7.5 cm、混凝土强度等级至少为C50。这样,有利于延长CASC中Cl–到达钢筋表面的距离和周期,降低钢筋对Cl-腐蚀的敏感性,提高混凝土抗Cl—扩散渗透能力,从而延缓钢筋起始锈蚀时间,降低锈蚀速率,达到延长CASC结构服役寿命的目的。

 The coral aggregate seawater concretes (CASC) with four kinds of mixture proportions soaked in seawater were investigated via a service life prediction program named ChaDuraLife V1.0 based on the modified chloride diffusion theory and reliability theory.The change rule of Da and time dependence index of Da (m) in CASC at different concrete strengths, curing ages and exposure time were analyzed. The influences of concrete cover thickness and concrete strength grade on the service life of CASC were discussed. The requirements for the minimum concrete cover thickness and the concrete strength of CASC in the tropical marine environment were proposed. The results show that the decreasing relationship between Da of CASC and the exposure time and the increasing relationship between Cs and the exposure time both follow the power function. When the failure probability of CASC is 5%–10%, the concrete cover thickness is 7.5 cm and the concrete strength is C50, the service life can reach 17–19 years. Therefore, for the CASC structures in marine island and reef engineering, the concrete cover should be thicker than 7.5 cm and the concrete strength grade should be over C50. All of these measures can favour the increase of the time and distance required for Cl– to reach the reinforcement surface, thus reducing the reinforcement sensitivity to Cl– corrosion and enhancing the ability of concrete to resist Cl– diffusion. Therefore, the initial corrosion time delays, the corrosion rate reduces and the service life prolongs.

基金项目:
国家自然科学基金项目(51508272,51678304,51878300);国家重点基础研究发展计划(973计划)项目(2015 CB655102);江苏省自然科学基金项目(BK201804133);中国博士后科学基金资助项目(2018M630558)。
作者简介:
参考文献:

 [1] 达波, 余红发, 麻海燕, 等. 南海海域珊瑚混凝土结构的耐久性影响因素[J]. 硅酸盐学报, 2016, 44(2): 253–260.

DA Bo, YU Hongfa, MA HaiYan, et al. J Chin Ceram Soc, 2016, 44(2): 254–261. 
[2] YU Hongfa, DA Bo, MA Haiyan, et al. Durability of concrete structures in tropical atoll environment[J]. Ocean Eng, 2017, 135: 1–7. 
[3] SONG H W, LEE C H, ANN K Y. Factors influencing chloride transport in concrete structures exposed to marine environments[J]. Cem Concr Comp, 2008, 30(2): 113–121.
[4] ANGST U, ELSENER B, LARSEN C K, et al. Critical chloride content in reinforced concrete-a review[J]. Cem Concr Res, 2009, 39: 1122–1138.
[5] DA Bo, YU Hongfa, MA Haiyan, et al. Chloride diffusion study of coral concrete in a marine environment[J]. Constr Build Mater, 2016, 123: 47–58.
[6] 余红发, 孙伟, 郡良慧, 等. 混凝土使用寿命预测方法的研究Ⅱ——模型验证与应用[J]. 硅酸盐学报, 2002, 30(6): 691–695.
YU Hongfa, SUN Wei, YAN Lianghui, et al. J Chin Ceram Soc, 2002, 30(6): 691–695.
[7] 余红发, 孙伟, 郡良慧, 等. 混凝土使用寿命预测方法的研究Ⅲ——混凝土使用寿命的影响因素及混凝土寿命评价[J]. 硅酸盐学报, 2002, 30(6): 696-701.
YU Hongfa, SUN Wei, YAN Lianghui, et al. J Chin Ceram Soc, 2002, 30(6): 696–701.
[8] 余红发, 孙伟, 郡良慧, 等. 混凝土使用寿命预测方法的研究I——理论模型[J]. 硅酸盐学报, 2002, 30(6): 686–690.
YU Hongfa, SUN Wei, YAN Lianghui, et al. J Chin Ceram Soc, 2002, 30(6): 686–690.
[9] TANG Luping. Engineering expression of the ClinConc model for prediction of free and total chloride ingress in submerged marine concrete[J]. Cem Concr Res, 2008, 38: 1092–1097.
[10] 梅其泉, 余红发, 麻海燕, 等. 高性能混凝土结构在热带海洋环境下的服役寿命分析[J]. 材料科学与工程学报, 2018, 36(1): 51-55.
MEI Qiquan, YU Hongfa, MA HaiYan, et al. J Mater Sci Eng, 2018, 36(1): 51-55. 
[11] 余红发. ChaDuraLife V1.0氯盐环境下混凝土结构寿命预测模型与计算机软件. 南京: 南京航空航天大学, 2015.
YU Hongfa. ChaDuraLife V1.0. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
[12] DA Bo, YU Hongfa, MA Haiyan, et al. Experimental investigation of whole stress-strain curves of coral concrete[J]. Constr Build Mater, 2016, 122: 81–89. 
[13] 中华人民共和国交通运输部, JTJ 270-1998, 水运工程混凝土试验 
规程[S]. 北京:人民交通出版社, 1998.
JTJ 270-1998. Beijing: China Communications Press, 1998.
[14] NILSSON L O, MASSAT M, TANG L P. The effect of non-linear chloride binding on the prediction of chloride penetration into concrete structure[A]. MALHOTRA Y M. Durability of concrete [C]. Detroit American Concrete Institute, 1994: 469–486.
[15] 余红发. 盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D]. 南京: 东南大学, 2004.
YU Hongfa. Study on high performance concrete in salt lake: durability, mechanism and service life prediction[D]. Nanjing: Southeast University, 2004.
[16] MAAGE M, HELLAND S, POULSEN E, et al. Service life prediction of existing concrete structures exposed to marine environment[J]. J ACI Mater, 1996, 93(6): 602–608.
[17] AMEY S L, JOHNSON D A, MILTENBERGER M A, et al. Predicting of service life of concrete marine structures: an environmental methodology[J]. J ACI Struct, 1998, 95(1): 27–36.
[18] THOMAS M D A, BAMFORTH P B. Modelling chloride diffusion in concrete effect of fly ash and slag[J]. Cem Concr Res, 1999, 29: 487–495.
[19] BENTZ E C, THOMAS M D A. Life-365 service life prediction model and computer program for predicting the service life and life-cycle costs of reinforced concrete exposed to chlorides[M]. Washington DC: SFA, 2008.
[20] The European Union-Brite EuRam III. General guidelines for durability design and redesign[R]. Brussels, 2000: 995–1347.
[21] MANGAT P S, LIMBACHIYA M C. Effect of initial curing on chloride diffusion in concrete repair materials[J]. Cem Concr Res, 1999, 29: 1475–1485.
[22] KASSIR M K, GHOSN M. Chloride-induced corrosion of reinforced concrete bride decks[J]. Cem Concr Res, 2002, 32: 139–143.
[23] 余红发, 孙伟. 混凝土氯离子扩散理论模型[J]. 东南大学学报:自然科学版, 2006, 36(S2): 68–76.
YU Hongfa, SUN Wei. J Southeast Univer: Nat Sci Ed, 2006, 36(S2): 68–76.
[24] MANGAT P S, MOLLOY B T. Prediction of long-term chloride concentration in concrete[J]. Mater Struct, 1994, 27: 338–346.
[25] 冯乃谦, 邢锋. 混凝土与混凝土结构的耐久性[M]. 北京: 机械工业出版社, 2009.
FENG Naiqian, XING Feng. Beijing: China Machine Press, China, 2009.
[26] STEPHEN L A, DWAYNE A J, MATTHEW A M, et al. Predicting the service life of concrete marine structures: an environmental methodology[J]. J ACI Struct, 1998, 95(2): 205–214.
[27] DA C A, FENAUX M, FEMANDEZ J, et al. Modelling of chloride penetration into non-saturated concrete: Case study application for real marine offshore cture[J]. Constr Build Mater, 2013, 43: 217–224.
[28] GJØRV O E. Durability design of concrete structures in the severe environments[M]. Taylor & Francis Croup, 2009.
[29] 达波, 余红发, 麻海燕, 等. 南海岛礁普通混凝土结构的耐久性调查与研究[J]. 哈尔滨工程大学学报, 2016, 37(8): 1034–1040. 
DA Bo, YU Hongfa, MA HaiYan, et al. J Harbin Eng Univ, 2016, 37(8): 1034–1040.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com