首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
X射线CT技术在矿渣-水泥复合体系水化度量化中的应用
作者:吴泽弘1 魏亚1 杨敏2 姚晓飞2 
单位:1. 清华大学土木工程系 土木工程安全与耐久教育部重点实验室 北京 100084  2. 中交第一公路勘察设计研究院有限公司 西安 710075 
关键词:矿渣-水泥净浆 CT扫描 热重 图像分割 水化程度 
分类号:TB321
出版年,卷(期):页码:2018,46(11):0-0
DOI:
摘要:

 对水胶比为0.3和0.5的矿渣-水泥净浆进行X射线CT扫描和热重分析(TGA),重构了水泥净浆尺度上的三维微观模型,观测了未水化水泥颗粒、矿渣、水化产物和孔隙在早龄期(1~28 d龄期)的形态变化。基于CT扫描结果量化未水化水泥颗粒含量,进行了水化程度计算,但矿渣-水泥体系CT图像中矿渣和水泥的界限较为模糊,阈值分割和边缘检测两种图像分割方法在该体系中均不适用。CT技术可以反映体系整体的水化程度,但无法精确计算矿渣和水泥各自的水化程度。

 The slag blended cement pastes with different water/binder ratios (i.e., 0.3 and 0.5) were analyzed via X-ray computed tomography(CT) scanning tests and thermogravimetric analysis. The 3D microscopic model of cement pastes was proposed, and the morphological changes of unhydrated particles (i.e., clinker and slag), hydration products and pores during early age (1-28 days) were investigated. Based on the results by the CT scanning, the hydration degree was calculated. In slag blended cement pastes, the demarcation of slag and cement remains unknown. The threshold and edge detection methods both are not applicable. The hydration degree of the entire slag blended cement paste can be given through the CT, but the accurate hydration degrees of cement and slag cannot be quantified.

基金项目:
中国交建2016年创新平台建设应用基础研究项目(2016-ZJKJ-PTJS04),高寒高海拔地区道路工程安全与健康国家重点实验室基金(YGY2017KYPT-06)
作者简介:
参考文献:

 [1] MORGAN I L, ELLINGER H, KLINKSIEK R, et al. EXAMINATION OF CONCRETE BY COMPUTERIZED TOMOGRAPHY [J]. J Am Concr Inst, 1980, 77(1): 23–27.

[2] LAWLER J S, KEANE D T, SHAH S P. Measuring three-dimensional damage in concrete under compression[J]. Aci Mater J, 2001, 98(6): 465–475.
[3] LANDIS E N, ZHANG T, NAGY E N, et al. Cracking, damage and fracture in four dimensions[J]. Mater Struct, 2007, 40(4): 357–364.
[4] YIO M H N, PHELAN J C, WONG H S, et al. Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes[J]. Cem Concr Res, 2014, 56: 171–181.
[5] FENG X, GARBOCZI E J, BENTZ D P, et al. Estimation of the degree of hydration of blended cement pastes by a scanning electron microscope point-counting procedure[J]. Cem Concr Res, 2004, 34(10): 1787–1793
[6] 王培铭, 丰曙霞, 刘贤萍. 水泥水化程度研究方法及其进展[J]. 建筑材料学报, 2005, 8(6): 646–652.
WANG Peiming, FENG Shuxia, LIU Xianping. J Build Mater (in Chinese), 2005, 8(6): 646–652.
[7] 张倩倩, 魏亚. 基于背散射电子图像的矿渣-水泥符合体系反应程度的定量分析[J]. 硅酸盐学报, 2015(5): 563–569.
ZHANG Qianqian, WEI Ya. J Chin Ceram Soc, 2015(5): 563–569.
[8] 王培铭, 丰曙霞, 刘贤萍. 用于背散射电子图像分析的水泥浆体抛光样品制备[J]. 硅酸盐学报, 2013, 41(2): 211–217.
WANG Peiming, FENG Shuxia, LIU Xianping. J Chin Ceram Soc, 2013, 41(2): 211–217.
[9] WEI Y, GAO X, LIANG S. Nanoindentation-based study of the micro-mechanical properties, structure, and hydration degree of slag-blended cementitious materials[J]. J Mater Sci, 2016, 51(7): 3349–3361.
[10] WEI Y, LIANG S, GAO X. Phase quantification in cementitious materials by dynamic modulus mapping[J]. Mater Charact, 2017, 127: 348–356.
[11] WEI Y, GAO X, LIANG S, et al. A combined SPM/NI/EDS method to quantify properties of inner and outer C-S-H in OPC and slag-blended cement pastes[J]. Cem Concr Compos, 2018, 85: 56–66.
[12] ZHANG M, HE Y, YE G, et al. Computational investigation on mass diffusivity in Portland cement paste based on X-ray computed microtomography (μCT) image[J]. Constr Build Mater, 2015, 27(1): 472–481.
[13] ZHANG M, JIVKOV A P. Micromechanical modelling of deformation and fracture of hydrating cement paste using X-ray computed tomography characterisation[J]. Compos Part B, 2016, 88: 64–72.
[14] HUANG J, KRABBENHOFT K, LYAMIN A V. Statistical homogenization of elastic properties of cement paste based on X-ray microtomographyimages[J]. Int  Solids Struct, 2013, 50(5): 699–709.
[15] Carraraa P, Wua T, Krusea R, De Lorenzisa L (2016)Towards multiscale modeling of the interaction betweentransport and fracture in concrete[C]. RILEM Tech Lett 1: 94–1012016, 1: 94.
[16] WONG R C K, CHAU K T. Estimation of air void and aggregate spatial distributions in concrete under uniaxial compression using computer tomography scanning[J]. Cem Concr Res, 2005, 35(8): 1566–1576.
[17] ASTM. Volume 04.02 Concrete and Aggregates[S]. American Society for Testing and Materials, 1998
[18] MAHMOUDI M T, FATHY M, SHARIFI M. A Classified and Comparative Study of Edge Detection Algorithm]//International Conference on Information Technology: Coding and Computings[C]. IEEE Computer Society, 2002: 117.
[19] VINCENT O R, FOLORUNSO O. A Descriptive Algorithm for Sobel Image Edge Detection[C]. InSITE 2009: Informing Science + IT Education Conference, 2009.
[20] ALAMRI M S S, KALYANKAR N V, KHAMITKAR S D. Image segmentation by using edge detection[J]. Int J Computer Sci Eng, 2010, 2(3): 804–807.
[21] SEIF A, SALUT M M, MARSONO M N. A hardware architecture of Prewitt edge detection[C]. Sustainable Utilization and Development in Engineering and Technology. IEEE, 2010: 99–101.
[22] ESCALANTE-GARCIA J I. Nonevaporable water from neat OPC and replacement materials in composite cements hydrated at different temperatures[J]. Cem Concr Res, 2003, 33(11): 1883–1888.
[23] KJELLSEN K O, DETWILER R J, GJØRV O E. Backscattered electron imaging of cement pastes hydrated at different temperatures[J]. Cem Concr Res, 1990, 20(2): 308–311.
[24] PAPADAKIS V G, FARDIS M N, VAYENAS C G. Hydration and carbonation of pozzolanic cements[J]. ACI Mater J, 1992, 89(2): 119–130.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com