首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Sm掺杂TiO2降解苯胺黑药性能
作者:祝思频1 2 王春英1 2 3 位振亚1 2 陈志勇1 2 武翠婷1 4 罗仙平1 2 3 
单位:1. 江西理工大学资源与环境工程学院 江西 赣州 341000 2. 江西省矿冶环境污染控制重点实验室 江西 赣州 341000  3. 西部矿业股份有限公司博士后科研工作站 西宁 810000 4. 石药控股集团有限公司 石家庄 050000 
关键词:钐掺杂 二氧化钛 光催化剂 苯胺黑药 正交实验 
分类号:X703.1
出版年,卷(期):页码:2018,46(11):0-0
DOI:10.14062/j.issn.0454-5648.2018.11.18
摘要:

 采用溶胶–凝胶法在不同煅烧温度下制备了不同Sm掺杂量TiO2 (x%Sm/TiO2)粉末。对制备的x%Sm/TiO2样品进行结构和性能表征,研究了x%Sm/TiO2粉末在紫外灯下对苯胺黑药的光催化降解性能。结果表明:适量Sm掺杂的TiO2比纯TiO2的光吸收强度及比表面积更大,且粒径更小。Sm掺杂TiO2粉末具有高的紫外光催化活性,在300 W汞灯照射下,500 ℃煅烧的0.25%Sm/TiO2样品催化反应180 min对苯胺黑药的降解率达91.9%,表现出较高催化效率。另外,0.25%Sm/TiO2重复使用4次后,对苯胺黑药的降解率无明显降低,表明Sm掺杂TiO2催化剂具有优良的稳定性。淬灭剂实验表明,催化剂降解苯胺黑药主要是羟基自由基和空穴的协同作用,其中羟基自由基起主要作用。

 Different Sm-doped TiO2 (x%Sm/TiO2) powders were prepared by a sol-gel method at different calcination temperatures. The structure and physicochemical properties of x%Sm/TiO2 were characterized, and the photodegradation activity of x%Sm/TiO2 for aniline aerofloat was investigated under the irradiation of 300 W mercury lamps. The results indicate that the Sm-doped TiO2 has a greater light absorption intensity, a larger specific surface area and a smaller particle size, compared to pure TiO2. The Sm-doped TiO2 has a high UV photocatalytic activity. Under the light of 300 W mercury lamps, a 0.25%Sm/TiO2 powder calcined at 500 ℃ shows the optimum photocatalytic activity, which is reflected by 91.9% removal efficiency to aniline aerofloat after 180 min. In addition, a 0.25%Sm/TiO2 powder still has a great photocatalytic activity for the photodegradation of aniline aerofloat after 4-time recycling, showing the stability of Sm-doped TiO2. The results of quenching experiment indicate that the photocatalytic activity based on the synergistic reaction between holes (h+) and hydroxyl radicals (•OH) while the •OH acts as the major role.

基金项目:
“十二五”国家科技支撑计划项目(2012BAC11B07);教育部新世纪优秀人才支持计划(NCET-10-0183);江西省主要学科与技术带头人培养对象计划项目(2010DD01200);“赣鄱英才555工程”领军人才培养计划项目;中国博士后科学基金项目(2015M582776XE, 2016T90967);江西理工大学清江青年英才支持项目。
作者简介:
参考文献:

 [1] 李友权, 刘蓉裳. 苯胺黑药物化性质的研究[J]. 矿冶, 1994, 3(4): 50–54. 

LI Youquan, LIU Rongshang. Min Metall (in Chinese), 1994, 3(4): 50–54. 
[2] 何名飞. 滇东南含锡难处理铅锌矿选矿关键技术研究[D]. 长沙: 中南大学, 2012. 
HE Mingfei. Research on key technology in the beneficiation of Sn-bearing refractory lead-zine mine in Southeast Yunnan (in Chinese, dissertation). Changsa: Central South University, 2012
[3] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37–38. 
[4] FUJISHIMA A, RAO T N, TRYK D A. Titanium dioxide photocatalysis[J]. J Photochem Photobiol, 2000, 1(1): 1–21. 
[5] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995, 95(1): 69-96. 
[6] 孙启梅. TiO2类光催化剂的改性研究[D]. 天津: 天津大学, 2013. 
SUN Qimei. Study on the modification of Titania-based Photocatalysts (in Chinese, dissertation). Tianjin: Tianjin University, 2013. 
[7] 卢迪. TiO2@PANI@铁氧体光催化磁流体的制备及其光催化与磁回收性能研究[D]. 兰州: 兰州交通大学, 2015. 
LU Di. Preparation of TiO2@PANI@ferrite magnetic fluid and its photocatalytic activity and magnetic recovery (in Chinese, dissertation). Lanzhou: Lanzhou Jiaotong University, 2015. 
[8] YU J C, YU J, HO W, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J]. Chem Mater, 2002, 14: 3808–3816. 
[9] ZHANG J, WANG X, BU Y, et al. Remediation of diesel polluted water through buoyant sunlight responsive iron and nitrogen co-doped TiO2 coated on chitosan carbonized fly ash[J]. Chem Eng J, 2016, 306: 460-470. 
[10] LUO X, WANG J, WANG C, et al. Degradation and mineralization of benzohydroxamic acid by synthesized mesoporous La/TiO2[J]. Int J Environl Res Publ Health, 2016, 13(10): 997. 
[11] XIAO Q, SI Z, ZHANG J, et al. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline[J]. J Hazard Mater, 2008, 150(1): 62–67. 
[12] TANG J, CHEN X, LIU Y, et al. Samarium-doped mesoporous TiO2 nanoparticles with improved photocatalytic performance for elimination of gaseous organic pollutants[J]. Solid State Sci, 2013, 15: 129–136. 
[13] 祝思频, 王春英, 王俊蔚, 等. Gd掺杂锐钛矿型TiO2光催化剂的制备及降解苯甲羟肟酸活性[J]. 硅酸盐学报, 2017, 45(10): 1523?1530. 
ZHU Sipin, WANG Chunying, CHEN Zhiyong, et al. J Chin Ceram Soc, 2017, 45(10): 1523–1530. 
[14] WANG R, WANG F, AN S, et al. Y/Eu co-doped TiO2: Synthesis and photocatalytic activities under UV-light[J]. J Rare Earth, 2015, 33(2): 154–159. 
[15] PAUL S, CHOUDHURY B, CHOUDHURY A. Magnetic property study of Gd doped TiO2 nanoparticles[J]. J Alloy Compd, 2014, 601: 201–206. 
[16] FANG X, CHEN X, ZHU Z. Optical and photocatalytic properties of Er3+ and/or Yb3+ doped TiO2 photocatalysts[J]. J Mater Sci-Mater Electron, 2017, 28(1): 474–479. 
[17] WEI L, YANG Y, XIA X, et al. Band edge movement in dye sensitized Sm-doped TiO2 solar cells: A study by variable temperature spectroelectrochemistry[J]. RSC Adv, 2015, 5(86): 70512–70521. 
[18] YUAN Z, TANG R, ZHANG Y, et al. Enhanced photovoltaic performance of dye-sensitized solar cells based on Co9S8 nanotube array counter electrode and TiO2/g-C3N4 heterostructure nanosheet photoanode[J]. J Alloy Compd, 2017, 691: 983–991. 
[19] DU J, WU Q, ZHONG S, et al. Effect of hydroxyl groups on hydrophilic and photocatalytic activities of rare earth doped titanium dioxide thin films[J]. J Rare Earth, 2015, 33(2): 148–153. 
[20] SUN P, GUO R T, LIU S M, et al. Enhancement of the low-temperature activity of Ce/TiO2 catalyst by Sm modification for selective catalytic reduction of NOx with NH3[J]. Mol Catal, 2017, 433: 224–234. 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com