首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
多孔超高温陶瓷:制备、结构及性能
作者:李飞1 刘吉轩1 黄晓2 张国军1 
单位:1. 东华大学纤维材料改性国家重点实验室 功能材料研究所 上海 201620  2. 中国科学院上海硅酸盐研究所 上海 200050 
关键词:多孔陶瓷 超高温陶瓷 制备 结构 性能 
分类号:TB321; TB35
出版年,卷(期):页码:2018,46(12):0-0
DOI:10.14062/j.issn.0454-5648.2018.12.03
摘要:

 综述了近年来国内外在多孔超高温陶瓷制备工艺、结构表征及性能评价的研究进展。基于制备多孔超高温陶瓷材料使用的陶瓷原料和助剂的差异,可以大致将多孔超高温陶瓷的制备方法分为干法成型、胶态成型、前驱溶液成型,不同制备工艺获得的多孔超高温陶瓷的在微观结构上差异化明显。最后,我们对多孔超高温陶瓷的发展趋势作了展望。

 The fabrication, structural characterization and properties of the porous ultra-high temperature ceramics (UHTCs) are reviewed. According to whether the solvent is used in the fabrication process and its relative content, the preparation of porous UHTCs can be classified into dry processing, colloidal processing and solution processing. The microstructure of the porous UHTCs differs from each other according to the processing procedure. In addition, we propose the research trends for the porous UHTCs. 

基金项目:
国家自然科学基金委青年基金项目(51602324), 中央高校基本科研业务费专项资金资助(项目编号:2232018D3-32), 上海市自然科学基金(No. 18ZR1401400), 国家自然科学基金委重点基金项目(50632070)、 面上基金项目(51272266)。
作者简介:
参考文献:

 [1] 邓先功, 韦婷婷, 冉松林, 等. 发泡–注凝成型法制备自结合莫来石

多孔陶瓷[J]. 硅酸盐学报, 2017, 45(12): 1803–1809.
DENG Xiangong, WEI Tingting, RAN Songlin, et al. J Chin Ceram
Soc, 2017, 45(12): 1803–1809.
[2] 霍思嘉, 王东, 王玉金, 等, 凝胶注模制备碳化钨多孔陶瓷[J], 硅
酸盐学报, 2016, 44(12): 1681–1685.
HUO Sijia, WANG Dong, WANG Yujin, et al. J Chin Ceram Soc,
2016, 44(12): 1681–1685.
[3] 董善亮, 霍思嘉, 崔立宇, 等, 凝胶注模制备碳化硼多孔陶瓷[J],
硅酸盐学报, 2017, 45(9): 1316–1321.
DONG Shanliang, HUO Sijia, CUI Liyu, et al. J Chin Ceram Soc,
2017, 45(9): 1316–1321.
[4] 张幸红, 胡平, 韩杰才, 等. 超高温陶瓷复合材料的研究进展[J].
科学通报, 2015, 60(3): 257–266.
ZHANG Xinghong, HU Ping, HAN Jiecai, et al, Chin Sci Bull (in
Chinese), 2015, 60(3): 257–266.
[5] QIU W, YE L, HAN W, et al. Review on the preparation of ultra-high
temperature cermaic precursors[J]. Materials China, 2015, 34(10):
751–761.
[6] WUCHINA E, OPLIA E, OPEKA M, et al. UHTCs: Ultra-high
temperature ceramic materials for extreme environment applications[J].
Interface, 2007, 16(30): 30–36.
[7] PADTURE N. Advanced structural ceramics in aerospace
propulsion[J]. Nat Mater, 2016, 15(8): 804–809.
[8] PAUL A, JAYASEELAN D, VENUGOPAL S, et al. UHTC
composites for hypersonic applications[J]. Am Ceram Soc Bull, 2012,
91(1): 22–28.
[9] ZHANG G J, NI D W, ZOU J, et al. Inherent anisotropy in transition
metal diborides and microstructure/property tailoring in ultra-high
temperature ceramics–A review[J]. J Eur Ceram Soc, 2018, 38(2):
371–389.
[10] FAHRENHOLTZ W, HILMAS G, Ultra-high temperature ceramics:
Materials for extreme environments[J]. Scripta Mater, 2017, 129:
94–99.
[11] FAHRENHOLTZ W, BINNER J, ZOU J. Synthesis of ultra-refractory
transition metal diboride compounds[J]. J Mater Res, 2016, 31(18):
2757–2772.
[12] KATOH Y, VASUDEVAMURTHY G, NOZAWA T, et al. Properties
of zirconium carbide for nuclear fuel applications[J]. J Nucl Mater,
2013, 441(1–3): 718–742.
[13] FAHRENHOLTZ W, HILMAS G, TALMY I, et al. Refractory
diborides of zirconium and hafnium[J]. J Am Ceram Soc, 2007, 90(5):
1347–1364.
[14] ZHANG G J, WU W W, KAN Y M, et al. Ultra-high temperature
ceramics (UHTCs) via reactive sintering[J]. Key Eng Mater, 2007,
336–338: 1159–1163.
[15] ZHANG G J, DENG Z Y, KONDO N, et al. Reactive hot pressing of
ZrB2–SiC composites[J]. J Am Ceram Soc, 2000, 83(9): 2330–2332.
[16] WANG X G, GUO W M, KAN Y M, et al. Densification behavior and
properties of hot–pressed ZrC ceramics with Zr and graphite
additives[J]. J Eur Ceram Soc, 2011, 31(6): 1103–1111.
[17] YIN J, ZHANG Z, HUANG Z, et al. Aqueous gelcasting and
pressureless sintering of zirconium diboride ceramics[J]. Inter J Appl
Ceram Tech, 2014, 11(6): 1039–1044.
[18] HUANG T, HILMAS G, FAHRENHOLTZ W, et al. Dispersion of
zirconium diboride in an aqueous, high–solids paste[J]. Inter J Appl
Ceram Tech, 2007, 4(5): 470–479.
[19] PREISS H, BERGER L M, SZULZEWSKY K. Thermal treatment of
binary carbonaceous/zirconia gels and formation of Zr(C, O, N) solid
solutions[J]. Carbon, 1996, 34(1): 109–119.
[20] PREISS H, SCHIERHORN E, BRZEZINKA K W, Synthesis of
polymeric titanium and zirconium precursors and preparation of
carbide fibres and films[J]. J Mater Sci, 1998, 33(19): 4697–4706.
[21] SACKS M D, WANG C A, YANG Z H, et al. Carbothermal reduction
synthesis of nanocrystalline zirconium carbide and hafnium carbide
powders using solution–derived precursors[J]. J Mater Sci, 2004,
39(19): 6057–6066.
[22] DOLLÉ M, GOSSET D, BOGICEVIC C, et al. Synthesis of nanosized
zirconium carbide by a sol–gel route[J]. J Eur Ceram Soc, 2007, 27(4):
2061–2067.
[23] TAO X Y, QIU W F, LI H. Synthesis of nanosized zirconium carbide
(ZrC) by a polymeric precursor route[J]. Adv Mater Res, 2011,
393–395.
[24] CAI T, QIU W F, LIU D, et al. Synthesis of soluble poly-yne polymers
containing zirconium and silicon and corresponding conversion to
nanosized ZrC/SiC composite ceramics[J]. Dalton Trans, 2013, 42(12):
4285–4290.
[25] XU L, CHENG J, LI X, et al. Preparation of carbon/carbon–ultra high
temperature ceramics composites with ultra high temperature ceramics
coating[J]. J Am Ceram Soc, 2018, 101(9): 3830–3836.
[26] PATRA N, AL N N, JAYASEELAN D D, et al. Thermal properties of
Cf/HfC and Cf/HfC–SiC composites prepared by precursor infiltration
and pyrolysis[J]. J Eur Ceram Soc, 2018, 38(5): 2297–2303.
[27] CHEN X, DONG S, KAN Y, et al. 3D Cf/SiC–ZrC–ZrB2 composites
fabricated via sol–gel process combined with reactive melt
infiltration[J]. J Eur Ceram Soc, 2016, 36(15): 3607–3613.
[28] ZHANG Y, WANG H, LI T, et al. Ultra-high temperature ceramic
coating for carbon/carbon composites against ablation above 2000 K[J].
第46 卷第12 期 李 飞 等:多孔超高温陶瓷:制备、结构及性能 · 1683 ·
Ceram Inter, 2017, 44(3) 3056–63.
[29] IKAWA K, IWAMOTO K. Coating microspheres with zirconium
carbide–carbon alloy by iodide process[J]. J Nucl Sci Tech, 1974,
11(6): 263–267.
[30] BRAIC V, VLADESCU A, BALACEANU M, et al. Nanostructured
multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings[J].
Surf Coat Tech, 2012, 211(Supplement C): 117–121.
[31] 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护材料[J]. 现代
技术陶瓷, 2017, 38(5): 311–390.
CHEN Yufeng, HONG Changqing, HU Chenglong, et al. Adv Ceram
(in Chinese), 2017, 38(5), 311–390.
[32] GIBSON L J, ASHBY M F. Cellular solids: Structure and
properties[M]. Cambridge: Cambridge University Press, 1997, .
[33] SCHWARTZWALDER K, SOMERS H, SOMERS A V. Method of
making porous ceramic articles[P]. US Patent, 3090094, 1963.
[34] MONTANARO L, JORAND Y, FANTOZZI G, et al. Ceramic foams
by powder processing[J]. J Eur Ceram Soc, 1998, 18(9): 1339–1350.
[35] SEPULVEDA P, BINNER J G P. Processing of cellular ceramics by
foaming and in situ polymerisation of organic monomers[J]. J Eur
Ceram Soc, 1999, 19(12): 2059–2066.
[36] SCHEFFLER M, COLOMBO P. Cellular ceramics: Structure,
manufacturing, properties and applications[M]. Weinheim:
Wiley–VCH, 2005.
[37] STUDART A R, GONZENBACH U T, TERVOORT E, et al.
Processing routes to macroporous ceramics: A review[J]. J Am Ceram
Soc, 2006, 89(6): 1771–1789.
[38] COLOMBO P. In praise of pores[J]. Science, 2008, 322(3900):
381–383.
[39] OHJI T, FUKUSHIMA M. Macro–porous ceramics: Processing and
properties[J]. Inter Mater Rev, 2012, 57(2): 115–131.
[40] YANG J F, ZHANG G J, KONDO N, et al. Synthesis and properties of
porous Si3N4/SiC nanocomposites by carbothermal reaction between
Si3N4 and carbon[J]. Acta Mater, 2002, 50(19): 4831–4840.
[41] YANG J F, ZHANG G J, KONDO N, et al. Porous 2H-silicon carbide
ceramics fabricated by carbothermal reaction between silicon nitride
and carbon[J]. J Am Ceram Soc, 2003, 86(6): 910–914.
[42] YANG J F, ZHANG G J, KONDO N, et al. Synthesis of porous Si3N4
ceramics with rod–shaped pore structure[J]. J Am Ceram Soc, 2005,
88(4): 1030–1032.
[43] ZHANG G J, YANG J F and OHJI T. Fabrication of porous ceramics
with unidirectionally aligned continuous pores[J]. J Am Ceram Soc,
2001, 84(6): 1395–1397.
[44] YU J, YANG J, LI S, et al. Preparation of Si3N4 foam ceramics with
nest-like cell structure by particle–stabilized foams[J]. J Am Ceram
Soc, 2012, 95(4): 1229–1233.
[45] YAO D, CHEN H, ZUO K, et al. High temperature mechanical
properties of porous Si3N4 prepared via SRBSN[J]. Ceram Inter, 2018,
44 (11): 11966–11971.
[46] DING S, ZHU S, ZENG Y, et al. Fabrication of mullite-bonded porous
silicon carbide ceramics by in situ reaction bonding[J]. J Eur Ceram
Soc, 2007, 27(4): 2095–2102.
[47] YAO D, XIA Y, ZUO K, et al. The effect of fabrication parameters on
the mechanical properties of sintered reaction bonded porous Si3N4
ceramics[J]. J Eur Ceram Soc, 2014, 34(15): 3461–3467.
[48] 王冬冬, 王刚, 孙小飞, 等. 纳米孔莫来石陶瓷材料的制备[J]. 无
机化学学报, 2012, 28(3): 491–494.
WANG Dongdong, SUN Gang, SUN Xiaofei, et al. J Inorg Mater (in
Chinese), 2012, 28(3), 491–494.
[49] 钱军民, 催凯, 艾好, 等. 多孔陶瓷制备技术研究进展[J]. 兵器材
料科学与工程, 2005, 5: 60–64.
QIAN Junmin, CUI Kai, AI Hao, et al. Ordance Mater Sci Eng (in
Chinese), 2005, 5: 60–64.
[50] FAN H B. HfC structural foams synthesized from polymer
precursors[D]. Auburn: Auburn University, 2005.
[51] YANG J F, ZHANG G J, OHJI T. Porosity and microstructure control
of porous ceramics by partial hot pressing[J]. J Mater Res, 2001, 16(7):
1916–1918.
[52] ZHANG S C, HILMAS G E, FAHRENHOLTZ W G. Pressureless
sintering of ZrB2–SiC ceramics[J]. J Am Ceram Soc, 2008, 91(1):
26–32.
[53] LIU J X, KAN Y M, ZHANG G J. Synthesis of ultra-fine hafnium
carbide powder and its pressureless sintering[J]. J Am Ceram Soc,
2010, 93(4): 980–986.
[54] GU Y F, LIU J X, XU F F, et al. Pressureless sintering of titanium
carbide doped with boron or boron carbide[J]. J Eur Ceram Soc, 2017,
37(2): 539–547.
[55] SANI E, MERCATELLI L, SANS J L, et al. Porous and dense
hafnium and zirconium ultra-high temperature ceramics for solar
receivers[J]. Opt Mater, 2013, 36(2): 163–168.
[56] JIN X, Dong L, Li Q, et al. Thermal shock cracking of porous
ZrB2–SiC ceramics[J]. Ceram Inter, 2016, 42(11): 13309–13313.
[57] JIN X, DONG L, XU H, et al. Effects of porosity and pore size on
mechanical and thermal properties as well as thermal shock fracture
resistance of porous ZrB2–SiC ceramics[J]. Ceram Inter, 2016, 42(7):
9051–9057.
[58] JIN X, ZHANG X, HAN J, et al. Thermal shock behavior of porous
ZrB2–SiC ceramics[J]. Mater Sci Eng A, 2013, 588: 175–180.
[59] JIANG J, WANG S, LI W, et al. Fabrication and characterization of
ZrC foam by melt infiltration[J]. J Alloy Compd, 2017, 695,
2295–2300.
[60] LEWIS J A. Colloidal processing of ceramics[J]. J Am Ceram Soc,
2000, 83(10): 2341–2359.
[61] FRANKS G V, TALLON C, STUDART A R, et al. Colloidal
processing: Enabling complex shaped ceramics with unique multiscale
structures[J]. J Am Ceram Soc, 2017, 100(2): 458–490.
[62] HUANG Y, YANG J L. Novel colloidal forming of ceramics[M].
Berlin: Springer–Verlag, 2010.
[63] YIN J, LIU X J, ZHANG H, et al. Dispersion and gelcasting of
zirconium diboride through aqueous route[J]. Inter J Appl Ceram Tech,
2013, 10: E226–E233.
[64] HE R J, ZHANG X H, HU P, et al. Aqueous gelcasting of ZrB2–SiC
ultra high temperature ceramics[J]. Ceram Inter, 2012, 38(7):
5411–5418.
[65] MEDRI V, MAZZOCCHI M, BELLOSI A. ZrB2–based sponges and
lightweight devices[J]. Inter J Appl Ceram Tech, 2011, 8(4): 815–823.
[66] DEVILLE S, SAIZ E, TOMSIA A P. Ice–templated porous alumina
structures[J]. Acta Mater, 2007, 55(6): 1965–1974.
[67] DEVILLE S. Ice–templating, freeze casting: Beyond materials
processing[J]. J Mater Res, 2013, 28(17): 2202–2219.
[68] DU J C, ZHANG X H, HONG C Q, et al. Microstructure and
mechanical properties of ZrB2–SiC porous ceramic by
camphene–based freeze casting[J]. Ceram Inter, 2013, 39(2): 953–957.
[69] LANDI E, SCITI D, MELANDRI C, et al. Ice templating of ZrB2
porous architectures[J]. J Eur Ceram Soc, 2013, 33(10): 1599–1607.
· 1684 · 《硅酸盐学报》 J Chin Ceram Soc, 2018, 46(12): 1669–1684 2018 年
[70] LEO S, JUKES L, PINCHES S, et al. Freeze casting for
near–net–shaping of dense zirconium diboride ceramics[J]. J Am
Ceram Soc, 2018, 101(7): 2770–2785.
[71] YOUNG A C, OMATETE O O, JANNEY M A, et al. Gelcasting of
alumina[J]. J Am Ceram Soc, 1991, 74(3): 612–618.
[72] YANG J L, YU J L, HUANG Y. Recent developments in gelcasting of
ceramics[J]. J Eur Ceram Soc, 2011, 31(14): 2569–2591.
[73] 张雯, 王红洁, 张勇, 等. 凝胶注模工艺制备高强度多孔氮化硅陶
瓷[J]. 无机材料学报, 2004, 4: 743–748.
ZHANG Wen, WANG Hongjie, ZHANG, Yong, et al. J Inorg
Mater(in Chinese), 2004, 4: 743–748.
[74] WU H, YIN J, LIU X J, et al. Aqueous gelcasting and pressureless
sintering of zirconium diboride foams[J]. Ceram Inter, 2014, 40(4):
6325–6330.
[75] WU H, YIN J, LI Y, et al. Aqueous gelcasted ZrB2–SiC foams derived
from composite poring mechanisms[J]. Ceram Inter, 2016, 42(1, Part
B): 1573–1580.
[76] LI F, HUANG X, ZHANG G J. Preparation of ultra-high temperature
ceramics-based materials by sol–gel routes[M]//Usha Chandra ed.
Recent Applications in Sol–Gel Synthesis. London: IntechOpen, 2017:
39–62.
[77] RHINE W, WANG J, BEGAG R. Polyimide aerogels, carbon aerogels,
and metal carbide aerogels and methods of making same[P]. US Patent,
7074880. 2006.
[78] RAMBO C R, CAO J, RUSINA O, et al. Manufacturing of biomorphic
(Si, Ti, Zr)–carbide ceramics by sol–gel processing[J]. Carbon, 2005,
43(6): 1174–1183.
[79] LI F, KANG Z, HUANG X, et al. Preparation of zirconium carbide
foam by direct foaming method[J]. J Eur Ceram Soc, 2014, 34(15):
3513–3520.
[80] LI F, LIANG M, MA X, et al. Preparation and characterization of
stoichiometric zirconium carbide foams by direct foaming of zirconia
sols[J]. J Porous Mater, 2015, 22(2): 493–500.
[81] LI F, HUANG X. Preparation of highly porous ZrB2/ZrC/SiC
composite monoliths using liquid precursors via direct drying
process[J]. J Eur Ceram Soc, 2018, 38(4): 1103–1111.
[82] PREISS H, SCHULTZE D, SZULZEWSKY K, Carbothermal
synthesis of vanadium and chromium carbides from solution–derived
precursors[J]. J Eur Ceram Soc, 1999, 19(2): 187–194.
[83] GIESCHE H. Mercury porosimetry: A general (practical) overview[J].
Part Part Syst Char, 2006, 23(1): 9–19.
[84] LEÓN L C A. New perspectives in mercury porosimetry[J]. Adv
Colloid Interface Sci, 1998, 76–77(98): 341–372.
[85] BREZNY R, GREEN D J.Mechanical behavior of cellular
ceramics[M]//Materials Science and Technology. Weinheim:
Wiley–VCH, 2006: 467–516.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com