首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
不同SiC源对Cf/ZrB2–SiC复合材料微结构和力学性能的影响
作者:张幸红 张东洋 胡平 方成 
单位:哈尔滨工业大学 复合材料与结构研究所 哈尔滨 150001 
关键词:陶瓷基复合材料 碳化硅粉体 聚碳硅烷 浆料注射 热压烧结 断裂功 
分类号:TB302
出版年,卷(期):页码:2018,46(12):0-0
DOI:10.14062/j.issn.0454-5648.2018.12.05
摘要:

 采用新型浆料注射/真空浸渍工艺实现了超高温陶瓷组分与碳纤维的有效复合,并结合低温(1 450 ℃)热压烧结实现了Cf/ZrB2–SiC复合材料的制备。研究了不同SiC源(SiC粉体和聚碳硅烷PCS)对复合材料微结构和力学性能的影响,结果表明:基于聚碳硅烷优异的流动性实现了陶瓷组分在纤维束内和束间的有效填充,并经低温热压烧结后Cf/ZrB2–PCS复合材料的相对密度为91.3%,主要归结于聚碳硅烷裂解后残留的微量无定性碳起到了表面除氧的作用而促进致密化,但该无定性碳弱化了晶界强度而导致力学性能降低。同时Cf/ZrB2–PCS复合材料表现出非脆性断裂模式且断裂功高达539 J/m2,较Cf/ZrB2–SiCp复合材料提升高达84.6%;该复合材料断裂功的提升主要归结于裂纹偏转、裂纹分叉和纤维桥联等多种增韧机制的协同效应,大幅度改善了ZrB2基超高温陶瓷材料的损伤容限和可靠性。

 he Cf/ZrB2–SiC composite with uniform architecture was fabricated by a low-temperature (i.e., 1 450 ℃) hot pressing technique. The effect of SiC resource (i.e., SiC powder and polycarbosilane) on the microstructures and mechanical properties of Cf/ZrB2–SiC composites was investigated. The results showed that the ceramic component could be effectively introduced into the intrafascicular and interfascicular spaces of carbon fiber bundles due to the excellent fluidity of liquid PCS. In addition, the relative density of the Cf/ZrB2–PCS composite was 91.3%, which was attributed to the surface oxygen removal by the residual amorphous carbon to promote the densification. However, the existence of amorphous carbon weakened the grain boundary strength, resulting in the decrease of flexural strength. The Cf/ZrB2–PCS composite exhibited a non-brittle fracture mode with a work of fracture of 539 J/m2, which was up to 84.6% compared with Cf/ZrB2–SiCp composite. The enhancement of work of fracture was attributed to the hybrid toughening mechanisms such as crack deflection, crack branching and fiber bridging, which greatly improved the damage tolerance and reliability of ZrB2-based ultra-high temperature ceramics.

基金项目:
国家杰出青年基金(51525201)资助
作者简介:
参考文献:

 [1] GUO S Q. Densification of ZrB2-based composites and their

mechanical and physical properties: A review[J]. J Eur Ceram Soc,
2009, 29(6): 995–1011.
[2] 王海龙, 汪长安, 张锐, 等. 二硼化锆基超高温陶瓷的制备及性
能[J]. 硅酸盐学报, 2007, 35(12): 1590–1594.
WANG Hailong, WAN Changan, ZHANG Rui, et al. J Chin Ceram
Soc, 2007, 35(12): 1590–1594.
[3] PADTURE N P. Advanced structural ceramics in aerospace
propulsion[J], Nat Mater, 2016, 15(8): 804–809.
[4] LEVINE S R, OPILA E J, HALBIG M C, et al. Evaluation of
ultra-high temperature ceramics for aeropropulsion use[J]. J Eur Ceram
Soc, 2001, 22(14): 2757–2767.
[5] ZHANG X, HU P, HAN J, et al. Ablation behavior of ZrB2–SiC ultra
high temperature ceramics under simulated atmospheric re-entry
conditions[J]. Compos Sci Technol, 2008, 68(7–8): 1718–1726.
[6] ZIMMERMANN J W, HILMAS G E, FAHRENHOLTZ W G.
Thermal shock resistance of ZrB2 and ZrB2–30% SiC[J]. Mater Chem
Phys, 2008, 112(1): 140–145.
[7] PARTHASARATHY T A, PETRY M D, CINIBULK M K, et al.
Thermal and oxidation response of UHTC leading edge samples
exposed to simulated hypersonic flight conditions[J]. J Am Ceram Soc,
2013, 96(3): 907–915.
[8] YANG F, ZHANG X, HAN J, et al. Characterization of hot-pressed
short carbon fiber reinforced ZrB2–SiC ultra-high temperature ceramic
composites[J]. J Alloys Compd, 2009, 472(1): 395–399.
[9] ZOLI L, SCITI D. Efficacy of a ZrB2–SiC matrix in protecting C fibres
from oxidation in novel UHTCMC materials[J]. Mater Des, 2017, 113:
207–213.
[10] GUI K, HU P, HONG W, et al. Microstructure, mechanical properties
and thermal shock resistance of ZrB2–SiC–Cf composite with inhibited
degradation of carbon fibers[J]. J Alloys Compd, 2017, 706: 16–23.
[11] TANG S, DENG J, WANG S, et al. Fabrication and characterization of
an ultra-high-temperature carbon fiber-reinforced ZrB2–SiC matrix
composite[J]. J Am Ceram Soc, 2010, 90(10): 3320–3322.
[12] GUO S. Thermal and electrical properties of hot-pressed short
pitch-based carbon fiber-reinforced ZrB2–SiC matrix composites[J].
Ceram Int, 2013, 39(5): 5733–5740.
[13] WALTER K. Ceramic matrix composites: fiber reinforced ceramics
and their applications[M]. Weinheim: Wiley-VCH Verlag GmbH & Co.
KGaA, 2008.
[14] TANG S, HU C. Design, preparation and properties of carbon fiber
reinforced ultra-high temperature ceramic composites for aerospace
applications: A review[J]. J Mater Sci Technol, 2017, 33(2): 117–130.
[15] HU P, GUI K, HONG W, et al. High-performance ZrB2–SiC–Cf
composite prepared by low-temperature hot pressing using nanosized
ZrB2 powder[J]. J Eur Ceram Soc, 2017, 37(6): 2317–2324.
[16] TANG S, DENG J, WANG S, et al. Ablation behaviors of ultra-high
temperature ceramic composites[J]. Mater Sci Eng A, 2007, 465(1–2):
1–7.
[17] LI Q, DONG S, WANG Z, et al. Fabrication and properties of 3-D
Cf/ZrB2–ZrC–SiC composites via polymer infiltration and pyrolysis[J].
Ceram Int, 2013, 39(5): 5937–5941.
[18] KÜTEMEYER M, SCHOMER L, HELMREICH T, et al. Fabrication
of ultra high temperature ceramic matrix composites using a reactive
melt infiltration process[J]. J Eur Ceram Soc, 2016, 36(15):
3647–3655.
[19] LI L, WANG Y, CHENG L, et al. Preparation and properties of 2D
C/SiC–ZrB2–TaC composites[J]. Ceram Int, 2011, 37(3): 891–896.
[20] BENZINGER W, HÜTTINGER K J. Chemical vapour infiltration of
pyrocarbon: I. Some kinetic considerations[J]. Carbon, 1996, 34(12):
1465–1471.
[21] HUANG L, XIANG Y, CAO F, et al. The degradation behavior of
UHTCs based coatings coated PIP-C/SiC composites in thermal
cycling environment[J]. Compos Part B Eng, 2016, 86: 126–134.
[22] PAUL A, VENUGOPAL S, BINNER J G P, et al. UHTC-carbon fibre
composites: Preparation, oxyacetylene torch testing and
characterization[J]. J Eur Ceram Soc, 2013, 33(2): 423–432.
[23] DAVIDGE R W, TAPPIN G. The effective surface energy of brittle
materials[J]. J Mater Sci, 1968, 3(2): 165–173.
[24] HASEGAWA Y, OKAMURA K. Synthesis of continuous silicon
carbide fibre[J]. J Mater Sci, 1989, 24(4): 1177–1190.
[25] CHEN W, ZHOU J. Study on the pyrolysis behavior of polycarbosilane[J].
J Wuhan Univ Technol-Mat Sci Ed, 2015, 30(4): 679–683.
[26] JANG Y S, JANK M, MAIER V, et al. SiC ceramic micropatterns
from polycarbosilanes[J]. J Eur Ceram Soc, 2010, 30(13): 2773–2779.
[27] ZHONG H, WANG Z, ZHOU H, et al. Properties and microstructure
evolution of Cf/SiC composites fabricated by polymer impregnation
and pyrolysis (PIP) with liquid polycarbosilane[J]. Ceram Int, 2017,
43(10): 7387–7392.
[28] ZHU S, FAHRENHOLTZ W G, HILMAS G E. Enhanced
densification and mechanical properties of ZrB2–SiC processed by a
preceramic polymer coating route[J]. Scripta Mater, 2008, 59(1):
123–126.
[29] ZHOU X J, ZHANG G J, LI Y G, et al. Hot pressed ZrB2–SiC–C ultra
high temperature ceramics with polycarbosilane as a precursor[J].
Mater Lett, 2007, 61(4): 960–963.
[30] SHA J J, LI J, WANG S H, et al. Toughening effect of short carbon
fibers in the ZrB2–ZrSi2 ceramic composites[J]. Mater Des, 2015, 75:
160–165.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com