首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
碳化硅陶瓷基复合材料基体和涂层改性研究进展
作者:刘巧沐1 许建锋2 刘佳3 
单位:1. 中国航发四川燃气涡轮研究院 成都 610500 2. 西安鑫垚陶瓷复合材料有限公司 西安 710089  3. 西安科技大学材料科学与工程学院 西安 710054 
关键词:碳化硅陶瓷基复合材料 高超音速飞行器 航空发动机 改性 
分类号:TB332
出版年,卷(期):页码:2018,46(12):0-0
DOI:10.14062/j.issn.0454-5648.2018.12.06
摘要:

 随着航空航天器性能的提高,其热端部件如航空发动机、高超音速飞行器的头锥及翼前缘等服役环境愈加苛刻。为了满足更苛刻的服役环境,需要对碳化硅陶瓷基复合材料(SiC matrix ceramic composites,CMC–SiC)进行基体或涂层改性以发展更长寿命、更耐高温和结构功能一体化的陶瓷基复合材料。介绍了航空航天器热端部件用CMC–SiC复合材料基体和涂层改性的研究进展、成果、现状及存在的问题,指出了今后需要着重解决改性CMC–SiC复合材料的工程化应用问题、发展具有更高使用温度的改性材料体系以及发展在发动机环境中应用的环境屏障涂层体系。

 The service environment of the hot-section components, such as aircraft engine, hypersonic vehicle nose and wing leading edges, becomes more severe with increasing the performance requirements for aerospace vehicles. To meet the requirements of the complicated and severe environment, the matrix or coating modified SiC matrix ceramic composites (CMC–SiC) with long lifetime, high thermal stability and structure-function integration need to be developed. The development, application and some existing problems of matrix or coating modified CMC–SiC were introduced. It is indicated that the future work could focus on the applications of modified CMC–SiC, the higher operation temperature material system and the environmental barrier coatings in gas turbine.

基金项目:
作者简介:
参考文献:

 [1] 张立同, 成来飞, 徐永东, 等. 自愈合碳化硅陶瓷基复合材料研究

及应用进展[J]. 航空材料学报, 2006, 26(3): 226–232.
ZHANG Litong, CHENG Laifei, XU Yongdong, et al. J Aeronaut
Mater (in Chinese), 2006, 26(3): 226–232.
[2] 张立同. 纤维增韧碳化硅陶瓷基复合材料—模拟、表征与优化设
计[M]. 北京: 化学工业出版社, 2009: 42–45.
[3] 张立同, 成来飞. 自愈合陶瓷基复合材料制备和应用基础[M]. 北
京: 化学工业出版社, 2015.
[4] 刘巧沐, 黄顺洲, 刘佳, 等. 高温材料研究进展及其在航空发动机
上应用[J]. 燃气涡轮试验与研究, 2014, 27(4): 51–56.
LIU Qiaomu, HUANG Shunzhou, LIU Jia, et al. Gas Turbine
Experiment and Research (in Chinese). 2014, 27(4): 51–56.
[5] 段刘阳, 罗磊, 王一光. 超高温陶瓷基复合材料的改性和烧蚀行
为[J]. 中国材料进展, 2015, 34(10): 762–769.
DUAN Liuyang, LUO Lei, WANG Yiguang. Mater China (in
Chinese). 2015, 34(10): 762–769.
[6] LUO L, WANG Y, DUAN L, et al. Ablation behavior of C/SiC–HfC
composites in the plasma wind tunnel[J]. J Eur Ceram Soc, 2016,
36(15): 3801–3807.
[7] LI Q, DONG S, WANG Z, et al. Fabrication and properties of 3-D
Cf/SiC–ZrC composites using ZrC precursor and polycarbosilane[J]. J
Am Ceram Soc, 2012, 95(4): 1216–1219.
[8] ZHAO X, WANG Y, DUAN L, et al. Improved ablation resistance of
C/SiC–ZrB2, composites via polymer precursor impregnation and
pyrolysis[J]. Ceram Int, 2017, 43(15): 12480–12489.
[9] 潘育松, 徐永东, 陈照峰, 等. 2D C/SiC复合材料烧蚀性能分析[J].
兵器材料科学与工程, 2006, 29(1): 17–21.
PAN Yusong, XU Yongdong, CHEN Zhaofeng, et al. Ordnance Mater
Sci Eng (in Chinese), 2006, 29(1): 17–21.
[10] CHEN S, HU H, ZHANG Y, et al. Effects of TaC amount on the
properties of 2D C/SiC–TaC composites prepared via precursor
infiltration and pyrolysis[J]. Mater Des, 2013, 51(5): 19–24.
[11] WANG Y, ZHU X, ZHANG L, et al. C/C–SiC–ZrC composites
fabricated by reactive melt infiltration with Si0. 87Zr0. 13 alloy[J]. Ceram
Int, 2012, 38(5): 4337–4343.
[12] HU H, WANG Q, CHEN Z, et al. Preparation and characterization of
C/SiC–ZrB2 composites by precursor infiltration and pyrolysis
process[J]. Ceram Int, 2010, 36(3): 1011–1016.
[13] DUAN L, ZHAO X, WANG Y, et al. Comparative ablation behaviors
of C/SiC–HfC composites prepared by reactive melt infiltration and
precursor infiltration and pyrolysis routes[J]. Ceram Int, 2017, 43(18):
16114–16120.
[14] SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix
composite materials for current and future propulsion technology
applications[J]. Acta Astronaut, 2004, 55(3–9): 409–420.
[15] PI H, FAN S, WANG Y. C/SiC–ZrB2–ZrC composites fabricated by
reactive melt infiltration with ZrSi2 alloy[J]. Ceram Int, 2012, 38(8):
6541–6548.
[16] LI Q, DONG S, WANG Z, et al. Fabrication and properties of 3-D
Cf/ZrB2–ZrC–SiC composites via polymer infiltration and pyrolysis[J].
Ceram Int, 2013, 39(5): 5937–5941.
[17] WESTWOOD M, WEBSTER J, DAY R, et al. Oxidation protection
for carbon fibre composites[J]. J Mater Sci, 1996, 31(6): 1389–1397.
[18] STRIFE J, SHEEHAN J. Ceramic coatings for carbon–carbon
composites[J] Am Ceram Soc Bull, 1988, 67(2): 369–374.
[19] DELAVAL R, PALAVIT G, REY J, et al. Method for protecting a
porous carbon-containing material from oxidation, and material
obtained thereby[P]. USA Patent, 5714244. 1998–2–3.
[20] ISOLA C, APPENDINO P, BOSCO F, et al. Protective glass coating
for carbon–carbon composites[J]. Carbon, 1998, 36(7–8): 1213–1218.
[21] GUO Q, SONG J, LIU L, et al. Factors influencing oxidation
resistance of B4C/C composites with self–healing properties[J]. Carbon,
1998, 36(11): 1597–1601.
[22] KOBAYASHI K, MIYAZAKI K, OGAWA I, et al. Carbon/ceramics
composites–preparation and properties[J]. Mater Des, 1988, 9(1):
10–21.
[23] 刘永胜. CVD/CVI法制备B–C陶瓷的工艺基础[D]. 西安: 西北工业
大学博士论文, 2 008.
LIU Yongsheng. Fundamental manufacturing technique by CVD/CVI
route for B–C ceramic (in Chinese, dissertation). Xi’an: Northwestern
Polytechnical University, 2008.
[24] 张钧. 热力氧化环境中CFCC–SiC复合材料微结构演变及损伤机
理[D]. 西安: 西北工业大学博士论文, 2007.
ZHANG Jun. Microstructure evolution and damage mechanism of
CFCC–SiC composites in stressed oxidation environments at high
temperatures (in Chinese, dissertation). Xi’an: Northwestern Polytechnical
University, 2007
[25] MCKEE D W. Borate treatment of carbon fibers and carbon/carbon
composites for improved oxidation resistance[J]. Carbon, 1986, 24(6):
737–741.
[26] GUO M, SHEN K, ZHENG Y. Multilayered coatings for protecting
carbon–carbon composites from oxidation[J]. Carbon, 1995, 33(4):
449–453.
[27] STRIFE J R, SHEEHAN J E. Ceramic coatings for carbon–carbon
composites[J]. Am Ceram Soc Bull, 1988, 67(2): 369–374.
[28] SHIMADA S, INAGAKI M, MATSUI K. Oxidation kinetics of
hafnium carbide in the temperature range of 480° to 600 ℃[J]. J Am
Ceram Soc, 1992, 75(10): 2671–2678.
[29] SHIMADA S, YUNAZAR F, OTANI S. Oxidation of hafnium carbide
and titanium carbide single crystals with the formation of carbon at
high temperatures and low oxygen pressures[J]. J Am Ceram Soc,
2000, 83(4): 721–728.
[30] BARGERON C, BENSON R, JETTE A, et al. Oxidation of hafnium
carbide in the temperature range 1400° to 2060 ℃[J]. J Am Ceram Soc,
1993, 76(4): 1040–1046.
[31] SHIMADA S. SHIMADA, K. NAKAJIMA, M. Inagaki. Oxidation of
single crystals of hafnium carbide in a temperature range of 600° to
· 1706 · 《硅酸盐学报》 J Chin Ceram Soc, 2018, 46(12): 1700–1706 2018 年
900 ℃[J]. J Am Ceram Soc, 1997, 80(7): 1749–1756.
[32] COURTRIGHT E L, PRATER J T , HOLCOMB G R, et al. Oxidation
of hafnium carbide and hafnium carbide with additions of tantalum and
praseodymium[J]. Oxid Met, 1991, 36(5): 423–437.
[33] http://www.ultramet.com/ceramic_protective_coatings.html#refractory
[34] LEVINE S R, OPILA E J. Tantalum additions to zirconium diboride
for improved oxidation resistance[J]. NASA TM–2003–212 483, 2003.
[35] PAVESE M, FINO P, BADINI C, et al. HfB2/SiC as a protective
coating for 2D Cf/SiC composites: Effect of high temperature oxidation
on mechanical properties[J]. Surf Coat Technol, 2008, 202(10): 2059–2067.
[36] LIU Q, ZHANG L, LIU J, et al. The Oxidation behavior of
SiC–ZrC–SiC coated C/SiC minicomposites at ultrahigh
temperatures[J]. J Am Ceram Soc, 2010, 93(12): 3990–3992.
[37] HUANG L M, XIANG Y, CAO F, et al. The degradation behavior of
UHTCs based coatings coated PIP–C/SiC composites in thermal
cycling environment[J]. Composites Part B, 2016, 86: 126–134.
[38] ZHUANG L, FU Q. Bonding strength, thermal shock and oxidation
resistance of interlocking (Zr, Hf)C–SiC/SiC double–layer coating for
C/C composites[J]. Surf Coat Technol, 2017, 315(15): 436–442.
[39] DU B, HONG C, QU Q, et al. Oxidative protection of a
carbon–bonded carbon fiber composite with double-layer coating of
MoSi2–SiC whisker and TaSi2–MoSi2–SiC whisker by slurry
method[J]. Ceram Int, 2017, 43(12): 9531–9537.
[40] FAN C, ZOU B, ZHU L, et al. Oxidation and thermal shock resistant
properties of Si/Yb2SiO5/NdMgAl11O19, coating deposited on Cf/SiC
composites[J]. Mater Des, 2017, 116: 261–267.
[41] GUO L, FU Q, SUN J, et al. The oxidation behavior of
MoSi2–CrSi2–Si/SiC coating for C/C composites in H2O–O2–Ar
atmosphere: experiment and first-principle investigation[J]. Ceram Int,
2017, 43(12): 8858–8865.
[42] 王一光, 成来飞, 张立同, 等. 一种陶瓷基复合材料使用温度大于
等于1400 ℃ 的 涂层的修补方法[P]. CN Patent, 102757260.
2013–10–09.
WANG Yiguang, CHENG Laifei, ZHANG Litong, et al. Repairing
method of ceramic-based composite material coating with utilization
temperature of being more than or equal to 1400 oC (in Chinese). CN
Patent, 102757260. 2013–10–09.
[43] CHEN Y, CHUNG Y W, LI S Y. Boron carbide and boron
carbonitride thin films as protective coatings in ultra-high density hard
disk drives[J]. Surf Coat Tech, 2006, 200(12–13): 4072–4077.
[44] KEUNECKE M, BEWILOGUA K, WIEMANN E, et al. Boron
containing combination tool coatings-characterization and application
tests[J]. Thin Solid Films, 2006, 494(1–2): 58–62.
[45] LATTEMANN M, ULRICH S. Investigation of structure and
mechanical properties of magnetron sputtered monolayer and
multilayer coatings in the ternary system Si–B–C[J]. Surf Coat Tech,
2007, 201(9–11): 5564–5569.
[46] LOWE D M, LAU K H, SANJURJO A. CVD coatings from the
Al–B–Si system on carbon[J]. Surf Coat Tech, 1997, 94–95(1–3):
291–296.
[47] PIQUERO T, VINCENT H, VINCEBT C, et al. Influence of carbide
coatings on the oxidation behavior of carbon fibers[J]. Carbon, 1995,
33(4): 455–467.
[48] LIU Q M, ZHANG L T, CHENG L F, et al. Chemical vapour
deposition of zirconium carbide and silicon carbide hybrid whiskers [J].
Mater Lett, 2010, 64(4): 552–554.
[49] LIU Q M, ZHANG L T, WANG Y G, et al. Thermodynamic
calculations of ZrC–SiC system for chemical vapor deposition
applications from SiCl4–ZrCl4–CH4–H2[J]. Ceram Int, 2010, 215:
65–75.
[50] LIU Q M, ZHANG L T, LIU J, et al. Thermodynamic study on
codeposition of ZrC–SiC from MTS–ZrCl4–CH4–H2[J]. Inorg Mater,
2010, 46(10): 1090–1095.
[51] KIRYUKHANTSEV–KORNEEV P V, SHEVEYKO A N,
LEMESHEVA M, et al. Investigation of Si–B–C–N coatings produced
by ion sputtering of SiBC target[J]. Prot Met Phys Chem, 2 017, 53(5):
873–878.
[52] FABRIZI A, CECCHINI R, KIRYUKHANTSEV–KORNEEV P, et al.
Comparative investigation of oxidation resistance and thermal stability
of nanostructured Ti–B–N and Ti–Si–B–N coatings[J]. Prot Met Phys
Chem, 2017, 53(3): 452–459.
[53] 马静, 胡建文, 闫冬青, 等. 一种Ti–B–C–N陶瓷涂层及其制备方
法[P]. CN Patent, 104032253. 2016–9–14.
MA Jing, HU Jianwen, YAN Dongqing. Ti–B–C–N ceramic coating
and preparation method thereof (in Chinese). CN Patent, 104032253.
2016–9–14.
[54] DASMAHAPATRA A, MELETIS E, KROLL P. First principles
modeling and simulation of Zr–Si–B–C–N ceramics: Developing hard
and oxidation resistant coatings[J]. Acta Mater, 2017, 125: 246–254.
[55] 黄旭涛, 严密. 功能梯度材料: 回顾与展望[J]. 材料科学与工程,
1997, 15(4): 35–38.
HUANG Xutao, YAN Mi. Mater Sci Eng (in Chinese), 1997, 15(4):
35–38.
[56] 赵军, 艾兴. 功能梯度材料的发展及展望[J]. 材料导报, 1997, 11(4):
57–60.
ZHAO Jun, AI Xing. Mater Rev (in Chinese), 1997, 11(4): 57–60.
[57] 冯志海, 龚晓冬, 赵彦伟, 等. 一种SiC基复合材料表面SiC–ZrB2梯
度涂层及其制备方法[P]. CN Patent, 105906380. 2016–8–31.
FENG Zhihai, GONG Xiaodong, ZHAO Yanwei, et al. SiC–ZrB2
gradient surface coating of Sic–based composite material and preparation
method thereof (in Chinese). CN Patent, 105906380. 2016–8–31.
[58] CAIRO C A A, GRACA M L A, SILVA C R M, et al. Functionally
gradient ceramic coating for carbon–carbon antioxidation protection[J].
J Eur Ceram Soc, 2001, 21(3): 325–329.
[59] ABDOLLAHI A, EHSANI N, VALEFI Z. Thermal shock resistance
and isothermal oxidation behavior of C/SiC–SiC nano, functionally
gradient coating on graphite produced via reactive melt infiltration
(RMI) [J]. Mater Chem Phys, 2016, 182: 49–61.
[60] YAO D J, LI H J, WU H, et al. Ablation resistance of ZrC/SiC gradient
coating for SiC-coated carbon/carbon composites prepared by
supersonic plasma spraying[J]. J Eur Ceram Soc, 2016, 36(15):
3739–3746.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com