[1] RICE R W, FREIMAN S W, BECHER P F. Grain-size dependence of
fracture energy in ceramics: I, experiment[J]. J Am Ceram Soc, 2006,
64(6): 345–350.
[2] YILMAZ H, AYDIN C, GUL B E. Flexural strength and fracture
toughness of dental core ceramics[J]. J Prosthet Dent, 2007, 98(2):
120–128.
[3] ROBERTS R J, ROWE R C, YORK P. The measurement of the
critical stress intensity factor (KIc) of pharmaceutical powders using
three point single edge notched beam (SENB) testing[J]. Int J
Pharmaceut, 1993, 91(2–3): 173–182.
[4] AWAJI H, SAKAIDA Y. V–notch technique for single-edge notched
beam and chevron notch methods[J]. J Am Ceram Soc, 1990, 73(11):
3522–3523.
[5] NOSE T, FUJII T. Evaluation of fracture toughness for ceramic
materials by a single-edge-precracked-beam method[J]. J Am Ceram
Soc, 2010, 71(5): 328–333.
[6] QUINN G D, BRADT R C. On the vickers indentation fracture
toughness test[J]. J Am Ceram Soc, 2007, 90(3): 673–680.
[7] WANG Anzhe, HU Ping, ZHANG Xinghong, et al. Accurate
measurement of fracture toughness in structural ceramics[J]. J Eur
Ceram Soc, 2017, 37(13): 4207–4212.
[8] FETT T. Influence of a finite notch root radius on fracture toughness[J].
J Eur Ceram Soc, 2005, 25(5): 543–547.
[9] KÜBLER J. Fracture toughness of ceramics using the SEVNB method:
preliminary results[J]. Ceram Eng Sci Proc, 1997, 18(4): 155–162.
[10] NAGELS E, DUFLOU J R, HUMBECK J V. The influence of sulphur
content on the quality of laser cutting of steel[J]. J Mater Process
Technol, 2007, 194(1–3): 159–162.
[11] THAWARI G, SARIN SUNDAR J K, SUNDARARAJAN G, JOSHI
S V. Influence of process parameters during pulsed Nd: YAG laser
cutting of nickel–base superalloys[J]. J Mater Process Technol, 2005,
170(1–2): 229–239.
[12] DUBEY A K, YADAVA V. Multi-objective optimization of Nd: YAG
laser cutting of nickel-based superalloy sheet using orthogonal array
with principal component analysis[J]. Opt Laser Eng, 2008, 46(2):
124–132.
[13] NISHIDA T, SHIONO T, NISHIKAWA T. On the fracture toughness
of polycrystalline alumina measured by SEPB methods[J]. J Eur
Ceram Soc, 1989, 5(6): 379–383.
[14] ASTM E. Standard test method for measurement of fracture toughness,
ASTM, 2006.
[15] NISHIDA T, HANAKI Y, PEZZOTTI G. Effect of notch-root radius
on the fracture toughness of a fine-grained alumina[J]. J Am Ceram
Soc, 1994, 77(2): 606–608.
[16] HENANN D L, ANAND L. Fracture of metallic glasses at notches:
effects of notch-root radius and the ratio of the elastic shear modulus to
the bulk modulus on toughness[J]. Acta Mater, 2009, 57(20): 6057–6074.
[17] FISCHER H, WAINDICH A, TELLE R. Influence of preparation of
ceramic SEVNB specimens on fracture toughness testing results[J].
Dent Mater, 2008, 24(5): 618–622.
[18] FETT T. Notch effects in determination of fracture toughness and
compliance[J]. Int J Fracture, 1985, 72(2): 27–30.
[19] COOK R F, LAWN B R, FAIRBANKS C J. Microstructure–strength
properties in ceramics: I, effect of crack size on toughness[J]. J Am
Ceram Soc, 1985, 68(11): 604–615.
[20] ZHAO W, PENG Cheng, LV Ming, et al. Effect of notch depth on
fracture toughness of Y-TZP and determination of its actual value[J].
Ceram Int, 2015, 41(1): 869–872.
[21] DODDS R H, ANDERSON T L, KIRK M T. A framework to correlate
a/W ratio effects on elastic–plastic fracture toughness (Jc)[J]. Int J
Fracture, 1991, 48(1): 1–22.
[22] SAKAI M, BRADT R C. Fracture toughness testing of brittle
materials[J]. Int Mater Rev, 1993, 38(2): 53–78.
|