首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
双钙钛矿Sr2MnMoO6陶瓷的制备及其结构与相变行为
作者:杨得鑫1 4 张博涵2 刘艳改3 杨涛1 孙青4 
单位:1. 杭州电子科技大学材料与环境工程学院 杭州 310018 2. 中南大学材料科学与工程学院 长沙 410083 3. 中国地质大学北京材料科学与工程学院 北京 100083 4. 浙江工业大学材料科学与工程学院 杭州 310014 
关键词:双钙钛矿 相变 晶体结构 结构精修 
分类号:O723+.6
出版年,卷(期):页码:2018,46(12):0-0
DOI:10.14062/j.issn.0454-5648.2018.12.09
摘要:

 采用固相法在5%H2/95%Ar气氛中合成了Sr2MnMoO6双钙钛矿陶瓷,使用原位变温X射线衍射及结构精修方法研究了其常温晶体结构、高温晶体结构和相变行为。结果表明:Sr2MnMoO6在常温条件下的晶体结构为单斜相P21/n,随着温度的升高,在443 K左右相变为四方相I4/m,在753 K转变为立方相Fm m。在立方相区域,随着温度的升高,由于B位反位缺陷导致Sr2MnMoO6晶胞体积逐渐变小,降低了双钙钛矿材料的B位有序度。

  Double perovskite Sr2MnMoO6 ceramic was prepared by a solid-state method in 5%H2/95%Ar atmosphere. The crystal structures and phase transitions of the double perovskites at both room and high temperatures were investigated via in situ variable temperature X-ray diffraction and the Rietveld crystal refinement method. The results show that the crystal structure of Sr2MnMoO6 at room-temperature is a monoclinic phase of P21/n. The crystal structure of the sample firstly transforms to a tetragonal phase I4/m at 443 K and then transforms to a cubic one Fm m at 753 K as the temperature increases. In the cubic phase regions, the cell volume of Sr2MnMoO6 decreases gradually due to the formation of B-site anti-site defects as the temperature increases. The anti-site defects can decrease the B-site order degree of double perovskites.

基金项目:
国家自然科学基金青年基金(51702289);中国博士后科学基金 (2016M601963)。
作者简介:
参考文献:

 J]. Phys Rev B, 2017. 95(6): 064418.

第46 卷第12 期 杨得鑫 等:双钙钛矿Sr2MnMoO6 陶瓷的制备及其结构与相变行为 · 1721 ·
[4] DU K, MENG W, WANG X, et al. Bandgap engineering of lead-free
double perovskite Cs2AgBiBr6 through trivalent metal alloying [J].
Angew Chem Int Edit, 2017. 56(28): 8158–8162.
[5] KUMAR N, KHURANA G K, RAM S, et al. Double perovskite
Sr2FeMoO6: a potential candidate for room temperature
magnetoresistance device applications [M] Rijeka: InTech, 2017: 89–110.
[6] SARIFUL S M, GHOSH D, DUTTA A, et al. Lead free double
perovskite oxides Ln2NiMnO6 (Ln = La, Eu, Dy, Lu), a new promising
material for photovoltaic application [J]. Mater Sci Eng B, 2017. 226:
10–17.
[7] DING H, SULLIVAN N P, and RICONTE S. Double perovskite
Ba2FeMoO6−δ as fuel electrode for protonic-ceramic membranes [J].
Solid State Ionics, 2017. 306: 97–103.
[8] YANG D, YANG T, SUN Q, et al. The annealing effects on the crystal
structure, magnetism and microstructure of the ferromagnetic double
perovskite Sr2FeMoO6 synthesized via spark plasma sintering [J]. J
Alloy Compd, 2017. 728: 337–342.
[9] SERRATE D, DE TERESA J M, and IBARRA M R. Double
perovskites with ferromagnetism above room temperature [J]. J.
Phys-Condens Mat, 2007. 19(2): 1–86.
[10] YANG D, HARRISON R J, SCHIEMER J A et al. Magnetostructural
coupling behavior at the ferromagnetic transition in double-perovskite
Sr2FeMoO6 [J]. Phys Rev B, 2016. 93(2): 024101.
[11] TAKAHASHI R, OHKULO I, YAMAUCHI K, et al. A-site-driven
ferroelectricity in strained ferromagnetic La2NiMnO6 thin films [J].
Phys Rev B, 2015. 91(13): 134107.
[12] ZHENG K, and ?WIERCZEK K. Physicochemical properties of rock
salt-type ordered Sr2MMoO6 (M=Mg, Mn, Fe, Co, Ni) double
perovskites [J]. J Eur Ceram Soc, 2014. 34(16): 4273–4284.
[13] YUAN N, LIU X, MENG F, et al. First-principles study of La2CoMnO6:
a promising cathode material for intermediate-temperature solid oxide
fuel cells due to intrinsic Co–Mn cation disorder [J]. Ionics, 2015.
21(6): 1675–1681.
[14] ZHAO X G, YANG J H, FU Y, et al. Design of lead-free inorganic
halide perovskites for solar cells via cation-transmutation [J]. J Am
Chem Soc, 2017. 139(7): 2630–2638.
[15] KOBAYASHI K I, KIMURA T, SAWADA H, et al.
Room-temperature magnetoresistance in an oxide material with an
ordered double-perovskite structure [J]. Nature, 1998. 395(6703):
677–680.
[16] KOBAYASHI K I, KIMURA T, TOMIOKA Y, et al. Intergrain
tunneling magnetoresistance in polycrystals of the ordered double
perovskite Sr2FeReO6 [J]. Phys Rev B, 1999. 591(17): 69977–11162.
[17] YU X, ASAKA, TOMIOKA Y, et al. TEM study of the influence of
antisite defects on magnetic domain structures in double perovskite
Ba2FeMoO6 [J]. J Electron Microsc, 2005. 54(1): 61–65.
[18] KIM J, SUNG J G, YANG H M et al. Effects of carrier doping on
Curie temperature in double perovskite Ba2FeMoO6 [J]. J Magn Magn
Mater, 2005. 290-291: 1009–1011.
[19] ROGADO N S, LI J, SLEIGHT A W, et al. Magnetocapacitance and
magnetoresistance near room temperature in a ferromagnetic
semiconductor: La2NiMnO6 [J]. Adv Mater, 2005. 17(18): 2225–2227.
[20] DASS R, YAN J Q, and GOODENOUGH J. Oxygen stoichiometry,
ferromagnetism, and transport properties of La2−xNiMnO6+δ [J]. Phys
Rev B, 2003. 68(6): 064415.
[21] MUÑOZ A, ALONSO J A, CASAIS M T, et al. Crystal and magnetic
structure of the complex oxides Sr2MnMoO6, Sr2MnWO6 and
Ca2MnWO6: a neutron diffraction study [J]. J Phys-Condens Mater,
2002. 14(38): 8817–8830.
[22] COHELO A. TOPAS-Academic(CP/DK). 2007.
[23] MASROUR R, and JABAR A. Magnetocaloric and magnetic
properties of La2NiMnO6 double perovskite [J]. Chin Phys B, 2016.
25(8): 087502.
[24] HOWARD C J, KENNEDY B J, and WOODWARD P M. Ordered
double perovskites–a group-theoretical analysis [J]. Acta Crystallogr B,
2003. 59(4): 463–471.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com