首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
制备工艺对Al2O3纳滤膜的结构及过滤性能的影响
作者:熊敏 肖汉宁 
单位:湖南大学材料科学与工程学院 长沙 410082 
关键词:勃姆石溶胶 纳滤 制备工艺 显微结构 过滤性能 
分类号:TQ028.8
出版年,卷(期):页码:2018,46(12):0-0
DOI:10.14062/j.issn.0454-5648.2018.12.12
摘要:

 采用异丙醇铝水解制备勃姆石(AlOOH)溶胶,并将其涂覆于Al2O3支撑体上制备Al2O3纳滤膜,研究了制备工艺对Al2O3纳滤膜结构与性能的影响。结果表明:水解温度为80 ℃时制备的AlOOH溶胶的水合粒径较小且均匀稳定,经700 ℃热处理后得到的Al2O3颗粒球形度好、粒径分布范围窄,平均粒径为13.6 nm,所得Al2O3纳滤膜的孔隙率为54.28%,孔径约5 nm。以聚乙烯醇(PVA)为增稠剂能改善AlOOH溶胶的成膜性能并调节膜层厚度。PVA含量为0.50% (质量分数)时,Al2O3纳滤膜的膜层厚度为0.95 μm,相应纯水通量达到287.6 L/(m2•h•MPa),在高效分离、精细提纯、净化等领域应用较广。

 Boehmite (AlOOH) sol was prepared via the hydrolysis of aluminum isopropoxide, which was coated on Al2O3 support to prepare Al2O3 nanofiltration membrane. The influence of preparation process on the structure and properties of Al2O3 nanofiltration membrane was investigated. The results show that the AlOOH sol prepared at a hydrolysis temperature of 80 ℃ has a small hydrated particle size and is homogeneous and stable. The Al2O3 particles heat-treated at 700 ℃ have a good sphericity and a narrow particle size distribution, and the average particle size is 13.6 nm. The porosity of the Al2O3 nanofiltration membrane sintered at 700 ℃ is 54.28%, and the pore size is approximately 5 nm. Polyvinyl alcohol (PVA) can be used as a thickener to improve the film forming performance of AlOOH sol and to adjust the thickness of the membrane. When the PVA content is 0.50% in mass fraction, the thickness of Al2O3 nanofiltration membrane is 0.95 μm, and the corresponding pure water flux reaches 287.6 L/(m2•h•MPa), which is widely used in the fields of efficient separation, fine purification, depuration, etc.

基金项目:
国家重点研发计划(2017YFB0310400)。
作者简介:
参考文献:

 [1] PABBY A K, RIZVI S S H, SASTRE A M. Handbook of membrane

separation: Chemical pharmaceutical, food, and biotechnological
applications[M]. New York: CRC Press, 2008.
[2] CHAKRABORTTY S, ROY M, PAL P. Removal of fluoride from
contaminated groundwater by cross flow nanofiltration: Transport
modeling and economic evaluation[J]. Desalination, 2013, 313:
115–124.
[3] ADLER J. Ceramic diesel particulate filters[J]. Int J Appl Ceram Tech,
2005, 2(6): 429–439.
[4] 梁希, 李建明, 陈志, 等. 新型纳滤膜材料研究进展[J]. 过滤与分
离, 2006, 16(3): 18–21.
LIANG Xi, LI Jianming, CHEN Zhi, et al. Filtr Separat (in Chinese),
2006, 16(3): 18–21.
[5] BENFER S, POPP U, RICHTER H, et al. Development and
characterization of ceramic nanofiltration memembranes[J]. Sep Purif
Technol, 2001, 22–23: 231–237.
[6] WEBER R, CHMIEL H, MAVROV V. Characteristics and application
of new ceramic nanofiltration membranes[J]. Desalination, 2003,
157(1): 113–125.
[7] EBRAHIMI M, KOVACS Z, SCHNEIDER M, et al. Multistage
filtration process for efficient treatment of oil-field produced water
using ceramic membranes[J]. Desalin Water Treat, 2012, 42(1–3):
17–23.
[8] 漆虹, 邢卫红, 范益群. 低温烧成高纯Al2O3多孔陶瓷膜支撑体的制
备[J]. 硅酸盐学报, 2010, 38(2): 283–288+293.
QI Hong, XING Weihong, FAN Yiqun. J Chin Ceram Soc, 2010, 38(2):
283–288+293.
[9] JONES C D, FIDALGO M, WIESNER M R, et al. Alumina
ultrafiltration membranes derived from carboxylate–alumoxane
nanoparticles[J]. J Membrane Sci, 2001, 193(2): 175–184.
[10] KHEIROLLAHI I, ABDELLAHI M, EMAMALIZADEH M, et al.
Preparation and characterization of multilayer mesoporous alumina
nanomembrane via sol–gel method using new precursors[J]. Ceram Int,
2015, 41: 15083–15088.
[11] SADEGHIAN Z, ZAMANI F, ASHRAFIZADEH S N. Removal of oil
hydrocarbon contaminants from wastewater by γ-alumina
nanofiltration membranes[J]. Desalin Water Treat, 2010, 20: 80–85.
[12] TOPUZ B, ÇIFTÇIOGLU M. Sol–gel derived mesoporous and
microporous alumina membranes[J]. J Sol-Gel Sci Technol, 2010,
56(3): 287–299.
[13] CHEN X, ZHANG W, LIN Y, et al. Preparation of high-fiux γ-alumina
nanofiltration membranes by using a modified sol–gel method[J].
Micropor Mesopor Mater, 2015, 214: 195–203.
[14] 黄剑锋. 溶胶?凝胶原理与技术[M]. 北京: 化学工业出版社, 2005:
123–125.
[15] WANG Z, WEI Y, XU Z, et al. Preparation, characterization and
solvent resistance of γ-Al2O3/α-Al2O3 inorganic hollow fiber
nanofiltration membrane[J]. J Membrane Sci, 2016, 503: 69–80.
[16] 苏秋成, 陈佩丽, 张少鸿, 等. 勃姆石热转化过程的原位表征与分
析[J]. 无机化学学报, 2012, 28(11): 2280–2284.
SU Qiuchen, CHEN Peili, ZHANG Shaohong, et al. Chinese J Inorg
Chem (in Chinese), 2012, 28(11): 2280–2284.
[17] SING K, WILLIAMS R. Physisorption hysteresis loops and the
characterization of nanoporous materials[J]. Adsorpt Sci Technol, 2004,
22(10): 773–782.
[18] QI H, NIU S, JIANG X. Enhanced performance of a macroporous
ceramic support for nanofiltration by using α-Al2O3 with narrow size
distribution[J]. Ceram Int, 2013, 39: 2463–2471.
[19] CHOWDHURY S R, SCHMUHL R, KEIZER K, et al. Pore size and
surface chemistry effects on the transport of hydrophobic and
hydrophilic solvents throughmesoporous γ-alumina and silica
MCM-48[J]. J Membr Sci, 2003, 225: 177–186.
[20] SCHAEP J, VANDECASTEELE C, PEETERS B, et al.
Characteristics and retention properties of a mesoporous γ-Al2O3
membrane for nanofiltration[J]. J Membr Sci, 1999, 163: 229–237.
[21] GEENS J, BRUGGEN V D B, VANDECASTEELE C. Transport
model for solvent permeation through nanofiltration membranes[J].
Sep Purif Technol, 2006, 48(3): 255–263.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com