[1] TANAKA T, KOMAKI H, CHAZONO M, et al. Basic research and
clinical application of beta-tricalcium phosphate (β-TCP)[J].
Morphologie, 2017, 101(334): 164–172.
[2] HERNIGOU P, DUBORY A, PARUIAT J, et al. Beta-tricalcium
phosphate for orthopedic reconstructions as an alternative to
autogenous bone graft[J]. Morphologie, 2017, 101(334): 173–179.
[3] LI B, LIU Z, YANG J, et al. Preparation of bioactive β-tricalcium
phosphate microspheres as bone graft substitute materials[J]. Mat Sci
Eng C-Mater, 2016, 70(2): 1200–1205.
[4] SASIDHARAN P R, SGLAVO V M. Effect of MgO addition on solid
state synthesis and thermal behavior of beta-tricalcium phosphate[J].
Ceram Int, 2015, 41(2): 2512–2518.
[5] PAN Y, HUANG J L, SHAO C Y. Preparation of β-TCP with high
thermal stability by solid reaction route[J]. J Mater Sci, 2003, 38(5):
1049–1056.
[6] LIOU S C, CHEN S Y. Transformation mechanism of different
chemically precipitated apatitic precursors into β-tricalcium phosphate
upon calcination[J]. Biomaterials, 2002, 23(23): 4541–4547.
[7] CUNEYT T A, KORKUSUZ F, TIMUCIN M, et al. An investigation
of the chemical synthesis and high-temperature sintering behaviour of
calcium hydroxyapatite (HA) and tricalcium phosphate (TCP)
bioceramics[J]. J Mater Sci-Mater M, 1997, 8(2): 91–96.
[8] SANOSH K P, CHU M C, BALAKRISHNAN A, et al. Sol–gel
synthesis of pure nano sized β-tricalcium phosphate crystalline
powders[J]. Curr Appl Phys, 2010, 10(1): 68–71.
[9] CHEN J, WANG Y, CHEN X, et al. A simple sol–gel technique for
synthesis of nanostructured hydroxyapatite, tricalcium phosphate and
biphasic powders[J]. Mater Lett, 2011, 65(12): 1923–1926.
[10] ODIER P, DUBOIS B, GERVAIS M, et al. Chemical inhomogeneities
in YBaCuO produced by conventionnal sintering[J]. Mater Res Bull,
1989, 24(1):11–22.
[11] SIN A, MONTASER B E, ODIER P. Nanopowders by organic
polymerisation[J]. J Sol–Gel Sci Technol, 2003, 26(1-3): 541–545.
[12] SIN A, ODIER P. Gelation by acrylamide, a quasi-universal medium
for the synthesis of fine oxide powders for electroceramic
applications[J]. Adv Mater, 2000, 12(9): 649–652.
[13] SU X, ZHOU J, BAI G, et al. Low temperature synthesis and
characterization of YAG nanopowders by polyacrylamide gel
第46 卷第12 期 郑华德 等:高分子网络凝胶法合成β-磷酸三钙粉体 · 1747 ·
method[J]. Ceram Int, 2016, 42(15): 17497–17502.
[14] EJTEMAEI M, TAVAKOLI A, CHARCHA N, et al. Synthesis of
sulfated zirconia nanopowders via polyacrylamide gel method[J]. Adv
Powder Technol, 2014, 25(3): 840–846.
[15] TAHMASEBPOUR M, BABALUO A A, AGHJEH M K. Synthesis of
zirconia nanopowders from various zirconium salts via polyacrylamide
gel method[J]. J Eur Ceram Soc, 2008, 28(4): 773–778.
[16] SIN A, ODIER P, NUNEZ-REGUEIRO M. Sol–gel processing of
precursor for high-Tc superconductors: Influence of rhenium on the
synthesis of Ba2Ca2Cu3Ox[J]. Physica C, 2000, 330(1–2): 9–18.
[17] SONG Y, NAN C W. Preparation of Ca3Co4O9 by polyacrylamide gel
processing and its thermoelectric properties. J Sol–Gel Sc Technol,
2007, 44(2): 139–144.
[18] WU S, LIU Y, HE L, et al. Preparation of β-spodumene-based
glass–ceramic powders by polyacrylamide gel process[J]. Mater Lett,
2004, 58(22): 2772–2775.
[19] SU X, WANG B, ZHOU J, et al. Synthesis and electrical field-assisted
sintering behaviour of yttria-stabilized tetragonal ZrO2 nanopowders
by polyacrylamide gel method[J]. Bull Mater Sci, 2016, 39(3):
641–646.
[20] 王柳燕, 张宁. 超细氧化铝的高分子网络凝胶法制备与研究[J]. 粉
末冶金技术, 2017, 35(4): 273–278.
WANG Liuyan, ZHANG Ning. P/M Technol (in Chinese). 2017, 35(4):
273–278.
[21] 陈沾, 朱雷, 汪恂. 钇掺杂纳米氧化锌的光催化性能[J]. 环境工程
学报, 2016, 10(11): 6290–6294.
CHEN Zhan, ZHU Lei, WANG Xun. Chin J Environ Eng (in Chinese).
2016, 10(11); 6290–6294.
[22] 吴建锋, 梁凤, 徐晓红, 等. 高分子凝胶法制备Tm3+掺杂纳米ZnO
及其光催化性能[J]. 硅酸盐学报, 2010, 38(12): 2230–2235.
WU Jianfeng, LIANG Feng, XU Xiaohong, et al. J Chin Ceram Soc,
2010, 38(12): 2230–2235.
[23] 贾 晓 卉 , 曾晓岛, 朱莉萍, 等. 采用高分子网络凝胶法制备
LaP3O9:Eu3+发光材料及其性能[J]. 中国有色金属学报, 2015, 25(4):
1032–1038.
JIA Xiaohui, CENG Xiaodao, ZHU Liping, et al.. Chin J Nonferrous
Met (in Chinese), 2015, 25(4): 1032–1038.
[24] SUN G, SUN G, ZHONG M, et al. Coordination mechanism,
characterization, and photoluminescence properties of spinel ZnAl2O4
nanoparticles prepared by a modified polyacrylamide gel route[J]. Russ
J Phys Chem A+, 2016, 90(3): 691–699.
[25] JAFARI M, HASSANZADEH-TABRIZI S A. Preparation of CoAl2O4
nanoblue pigment via polyacrylamide gel method[J]. Powder Technol,
2014, 266(6): 236–239.
[26] MUKHTAR A, MEHMOOD T, KHAN B S, et al. Effect of Co2+
concentration on the crystal structure of electrodeposited Co
nanowires[J]. J Cryst Growth, 2016, 441: 26–32.
[27] SHAO Z B, WANG C Y, GENG S D, et al. Fabrication of
nanometer-sized zinc oxide at low decomposing temperature[J]. J
Mater Process Tech, 2006, 178(1): 247–250.
|